Problem D. Hidden Rook

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

This problem is interactive.

Roman hid a rook on an $n \times m$ chessboard. You need to find its exact position. You can ask Roman the following question at most 4 times: "How many cells (i, j), where $X_{1} \leq i \leq X_{2}$ and $Y_{1} \leq j \leq Y_{2}$, are under the hidden rook's attack?" A rook attacks all cells in the same row or column, including its own cell.

Input

The first line contains an integer t, the number of test cases ($1 \leq t \leq 15000$).

Interaction Protocol

The interaction in each test case starts with two integers, n and m : the chessboard dimensions ($3 \leq n, m \leq 15$).
To ask Roman a question, print "? $X_{1} Y_{1} X_{2} Y_{2}$ " $\left(1 \leq X_{1} \leq X_{2} \leq n, 1 \leq Y_{1} \leq Y_{2} \leq m\right)$. After that, you will receive an integer K : the number of cells (i, j), where $X_{1} \leq i \leq X_{2}$ and $Y_{1} \leq j \leq Y_{2}$, that are under the hidden rook's attack. You can ask at most 4 questions in each test case.
To report the answer, print "! $X \quad Y^{\text {" }}$, where (X, Y) is the hidden rook's cell.
After making each query, do not forget to print the newline character and flush the output. You can use the following commands:

- fflush(stdout) or cout.flush() in $\mathrm{C}++$;
- System.out.flush() in Java;
- flush(output) in Pascal;
- stdout.flush() in Python;
for other languages, see their documentation. You will get the "Idleness limit exceeded" verdict if you fail to do so.

Example

standard input	standard output
2	
66	
	? 1136
8	
	? 2223
2	
	! 23
75	
	? 1175
11	
	? 11114
4	
	! 14

