
–
highway

Highway	Tolls
In	 Japan,	cities	are	connected	by	a	network	of	highways.	This	network	consists	of	
cities	 and	 	 highways.	 Each	 highway	 connects	 a	 pair	 of	 distinct	 cities.	 No	 two
highways	connect	the	same	pair	of	cities.	Cities	are	numbered	from	 	through	 ,
and	highways	are	numbered	from	 	through	 .	You	can	drive	on	any	highway	in
both	directions.	You	can	travel	from	any	city	to	any	other	city	by	using	the	highways.

A	toll	 is	charged	for	driving	on	each	highway.	The	toll	 for	a	highway	depends	on	the
traffic	condition	on	the	highway.	The	traffic	is	either	light	or	heavy.	When	the	traffic
is	 light,	 the	toll	 is	 	yen	(Japanese	currency).	When	the	traffic	 is	heavy,	 the	toll	 is	
yen.	It's	guaranteed	that	 .	Note	that	you	know	the	values	of	 	and	 .

You	have	a	machine	which,	given	the	traffic	conditions	of	all	highways,	computes	the
smallest	 total	 toll	 that	 one	has	 to	pay	 to	 travel	 between	 the	pair	 of	 cities	 	and	 	 (

),	under	the	specified	traffic	conditions.

However,	 the	 machine	 is	 just	 a	 prototype.	 The	 values	 of	 	 and	 	 are	 fixed	 (i.e.,
hardcoded	in	the	machine)	and	not	known	to	you.	You	would	like	to	determine	 	and	 .
In	order	to	do	so,	you	plan	to	specify	several	traffic	conditions	to	the	machine,	and	use
the	toll	values	that	it	outputs	to	deduce	 	and	 .	Since	specifying	the	traffic	conditions
is	costly,	you	don't	want	to	use	the	machine	many	times.

Implementation	details

You	should	implement	the	following	procedure:

​find_pair(int	N,	int[]	U,	int[]	V,	int	A,	int	B) ​

​N ​:	the	number	of	cities.
​U ​	 and	 ​V ​:	 arrays	 of	 length	 ,	 where	 	 is	 the	 number	 of	 highways	 connecting
cities.	 For	 each	 	 (),	 the	 highway	 	 connects	 the	 cities	 ​U[i] ​	 and
​V[i] ​.
​A ​:	the	toll	for	a	highway	when	the	traffic	is	light.
​B ​:	the	toll	for	a	highway	when	the	traffic	is	heavy.
This	procedure	is	called	exactly	once	for	each	test	case.
Note	 that	 the	 value	 of	 	 is	 the	 lengths	 of	 the	 arrays,	 and	 can	 be	 obtained	 as
indicated	in	the	implementation	notice.

Highway (1 of 4)

The	procedure	 ​find_pair ​	can	call	the	following	function:

​int64	ask(int[]	w) ​

The	length	of	 ​w ​	must	be	 .	The	array	 ​w ​	describes	the	traffic	conditions.
For	each	 	(),	 ​w[i] ​	gives	the	traffic	condition	on	the	highway	 .	The
value	of	 ​w[i] ​	must	be	either	 	or	 .

​w[i]	=	0 ​	means	the	traffic	of	the	highway	 	is	light.
​w[i]	=	1 ​	means	the	traffic	of	the	highway	 	is	heavy.

This	function	returns	the	smallest	total	toll	for	travelling	between	the	cities	 	and	
,	under	the	traffic	conditions	specified	by	 ​w ​.

This	function	can	be	called	at	most	 	times	(for	each	test	case).

find_pair ​	should	call	the	following	procedure	to	report	the	answer:

​answer(int	s,	int	t) ​

​s ​	and	 ​t ​	must	be	the	pair	 	and	 	(the	order	does	not	matter).
This	procedure	must	be	called	exactly	once.

If	 some	 of	 the	 above	 conditions	 are	 not	 satisfied,	 your	 program	 is	 judged	 as	 ​Wrong
Answer ​.	Otherwise,	your	program	is	 judged	as	 ​Accepted ​	and	your	score	 is	calculated
by	the	number	of	calls	to	 ​ask ​	(see	Subtasks).

Example

Let	 ,	 ,	 ,	 ,	 ,	 ,	 ,	and	 .

The	grader	calls	 ​find_pair(4,	[0,	0,	0,	1],	[1,	2,	3,	2],	1,	3) ​.

In	 the	 figure	 above,	 the	 edge	 with	 number	 	 corresponds	 to	 the	 highway	 .	 Some
possible	calls	to	 ​ask ​	and	the	corresponding	return	values	are	listed	below:

Highway (2 of 4)

Call Return

​ask([0,	0,	0,	0]) ​ 2

​ask([0,	1,	1,	0]) ​ 4

​ask([1,	0,	1,	0]) ​ 5

​ask([1,	1,	1,	1]) ​ 6

For	the	function	call	 ​ask([0,	0,	0,	0]) ​,	the	traffic	of	each	highway	is	light	and	the
toll	for	each	highway	is	 .	The	cheapest	route	from	 	to	 	 is	 .	The
total	toll	for	this	route	is	 .	Thus,	this	function	returns	 .

For	a	correct	answer,	the	procedure	 ​find_pair ​	should	call	 ​answer(1,	3) ​	or	 ​answer(3,
1) ​.

The	 file	 ​sample-01-in.txt ​	 in	 the	 zipped	 attachment	 package	 corresponds	 to	 this
example.	Other	sample	inputs	are	also	available	in	the	package.

Constraints

For	each	

	and	 	()
You	can	travel	from	any	city	to	any	other	city	by	using	the	highways.

In	this	problem,	the	grader	is	NOT	adaptive.	This	means	that	 	and	 	are	fixed	at	the
beginning	of	the	running	of	the	grader	and	they	do	not	depend	on	the	queries	asked	by
your	solution.

Subtasks

1.	 (5	points)	one	of	 	or	 	is	 ,	 ,	
2.	 (7	points)	one	of	 	or	 	is	 ,	
3.	 (6	points)	 ,	 ,	 	()
4.	 (33	points)	
5.	 (18	points)	 ,	

Highway (3 of 4)

6.	 (31	points)	No	additional	constraints

Assume	 your	 program	 is	 judged	 as	 ​Accepted ​,	 and	makes	 	 calls	 to	 ​ask ​.	 Then	 your
score	 	for	the	test	case,	depending	on	its	subtask	number,	is	calculated	as	follows:

Subtask	1.	 .
Subtask	2.	If	 ,	 .	Otherwise	 .
Subtask	3.	If	 ,	 .	Otherwise	 .
Subtask	4.	If	 ,	 .	Otherwise	 .
Subtask	5.	If	 ,	 .	Otherwise	 .
Subtask	6.

If	 ,	 .
If	 ,	 .
If	 ,	 .

Note	that	your	score	for	each	subtask	is	the	minimum	of	the	scores	for	the	test	cases
in	the	subtask.

Sample	grader

The	sample	grader	reads	the	input	in	the	following	format:

line	 :	 	 	 	 	 	
line	 	():	 	

If	your	program	is	judged	as	 ​Accepted ​,	the	sample	grader	prints	 ​Accepted:	q ​,	with	 ​q ​
the	number	of	calls	to	 ​ask ​.

If	your	program	is	judged	as	 ​Wrong	Answer ​,	it	prints	 ​Wrong	Answer:	MSG ​,	where	 ​MSG ​	is
one	of:

​answered	not	exactly	once ​:	The	procedure	 ​answer ​	was	not	called	exactly	once.
​w	is	invalid ​:	The	length	of	 ​w ​	given	to	 ​ask ​	is	not	 	or	 ​w[i] ​	is	neither	 	nor	 	for
some	 	().
​more	than	100	calls	to	ask ​:	The	function	 ​ask ​	is	called	more	than	100	times.
​{s,	t}	is	wrong ​:	The	procedure	 ​answer ​	is	called	with	an	incorrect	pair	 ​s ​	and	 ​t ​.

Highway (4 of 4)

