
1	/	3

International	Olympiad	in	Informatics	2015
26th	July	-	2nd	August	2015
Almaty,	Kazakhstan
Day	1

scales
Language:	en-ISC

Scales
Amina	has	six	coins,	numbered	from	 	to	 .	She	knows	that	the	coins	all	have	different	weights.	She
would	like	to	order	them	according	to	their	weight.	For	this	purpose	she	has	developed	a	new	kind	of
balance	scale.

A	traditional	balance	scale	has	two	pans.	To	use	such	a	scale,	you	place	a	coin	into	each	pan	and	the
scale	will	determine	which	coin	is	heavier.

Amina’s	new	scale	is	more	complex.	It	has	four	pans,	labeled	 ,	 ,	 ,	and	 .	The	scale	has	four
different	settings,	each	of	which	answers	a	different	question	regarding	the	coins.	To	use	the	scale,
Amina	must	place	exactly	one	coin	into	each	of	the	pans	 ,	 ,	and	 .	Additionally,	in	the	fourth
setting	she	must	also	place	exactly	one	coin	into	pan	 .

The	four	settings	will	instruct	the	scale	to	answer	the	following	four	questions:

1.	 Which	of	the	coins	in	pans	 ,	 ,	and	 	is	the	heaviest?
2.	 Which	of	the	coins	in	pans	 ,	 ,	and	 	is	the	lightest?
3.	 Which	of	the	coins	in	pans	 ,	 ,	and	 	is	the	median?	(This	is	the	coin	that	is	neither	the

heaviest	nor	the	lightest	of	the	three.)
4.	 Among	the	coins	in	pans	 ,	 ,	and	 ,	consider	only	the	coins	that	are	heavier	than	the	coin	on

pan	 .	If	there	are	any	such	coins,	which	of	these	coins	is	the	lightest?	Otherwise,	if	there	are
no	such	coins,	which	of	the	coins	in	pans	 ,	 ,	and	 	is	the	lightest?

Task
Write	a	program	that	will	order	Amina’s	six	coins	according	to	their	weight.	The	program	can	query
Amina’s	scale	to	compare	weights	of	coins.	Your	program	will	be	given	several	test	cases	to	solve,
each	corresponding	to	a	new	set	of	six	coins.

Your	program	should	implement	the	functions	init	and	orderCoins.	During	each	run	of	your
program,	the	grader	will	first	call	init	exactly	once.	This	gives	you	the	number	of	test	cases	and
allows	you	to	initialize	any	variables.	The	grader	will	then	call	orderCoins()	once	per	test	case.

init(T)
T:	The	number	of	test	cases	your	program	will	have	to	solve	during	this	run.	T	is	an
integer	from	the	range	 .

This	function	has	no	return	value.

orderCoins()
This	function	is	called	exactly	once	per	test	case.

The	function	should	determine	the	correct	order	of	Amina’s	coins	by	calling	the	grader

2	/	3

functions	getHeaviest(),	getLightest(),	getMedian(),	and/or
getNextLightest().
Once	the	function	knows	the	correct	order,	it	should	report	it	by	calling	the	grader	function
answer().
After	calling	answer(),	the	function	orderCoins()	should	return.	It	has	no	return
value.

You	may	use	the	following	grader	functions	in	your	program:

answer(W)	—	your	program	should	use	this	function	to	report	the	answer	that	it	has	found.

W:	An	array	of	length	6	containing	the	correct	order	of	coins.	W[0]	through	W[5]	should
be	the	coin	numbers	(i.e.,	numbers	from	 	to)	in	order	from	the	lightest	to	the	heaviest
coin.

Your	program	should	only	call	this	function	from	orderCoins(),	once	per	test	case.
This	function	has	no	return	value.

getHeaviest(A,	B,	C),	getLightest(A,	B,	C),	getMedian(A,	B,	C) 	—	these
correspond	to	settings	1,	2	and	3	respectively	for	Amina’s	scale.

A,	B,	C:	The	coins	that	are	put	in	pans	 ,	 ,	and	 ,	respectively.	A,	B,	and	C	should	be
three	distinct	integers,	each	between	 	and	 	inclusive.

Each	function	returns	one	of	the	numbers	A,	B,	and	C:	the	number	of	the	appropriate	coin.
For	example,	getHeaviest(A,	B,	C)	returns	the	number	of	the	heaviest	of	the	three
given	coins.

getNextLightest(A,	B,	C,	D) 	—	this	corresponds	to	setting	4	for	Amina’s	scale

A,	B,	C,	D:	The	coins	that	are	put	in	pans	 ,	 ,	 ,	and	 ,	respectively.	A,	B,	C,	and	D
should	be	four	distinct	integers,	each	between	 	and	 	inclusive.

The	function	returns	one	of	the	numbers	A,	B,	and	C:	the	number	of	the	coin	selected	by
the	scale	as	described	above	for	setting	4.	That	is,	the	returned	coin	is	the	lightest	amongst
those	coins	on	pans	 ,	 ,	and	 	that	are	heavier	than	the	coin	in	pan	 ;	or,	if	none	of
them	is	heavier	than	the	coin	on	pan	 ,	the	returned	coin	is	simply	the	lightest	of	all	three
coins	on	pans	 ,	 ,	and	 .

Scoring
There	are	no	subtasks	in	this	problem.	Instead,	your	score	will	be	based	on	how	many	weighings	(total
number	of	calls	to	grader	functions	getLightest(),	getHeaviest(),	getMedian()	and/or
getNextLightest())	your	program	makes.

Your	program	will	be	run	multiple	times	with	multiple	test	cases	in	each	run.	Let	 	be	the	number	of
runs	of	your	program.	This	number	is	fixed	by	the	test	data.	If	your	program	does	not	order	the	coins
correctly	in	any	test	case	of	any	run,	it	will	get	0	points.	Otherwise,	the	runs	are	scored	individually	as
follows.

Let	 	be	the	smallest	number	such	that	it	is	possible	to	sort	any	sequence	of	six	coins	using	
weighings	on	Amina’s	scale.	To	make	the	task	more	challenging,	we	do	not	reveal	the	value	of	

3	/	3

here.

Suppose	the	largest	number	of	weighings	amongst	all	test	cases	of	all	runs	is	 	for	some	integer	
.	Then,	consider	a	single	run	of	your	program.	Let	the	largest	number	of	weighings	amongst	all	

test	cases	in	this	run	be	 	for	some	non-negative	integer	 .	(If	you	use	fewer	than	 	weighings
for	every	test	case,	then	 .)	Then,	the	score	for	this	run	will	be	 ,	rounded	down	to

two	digits	after	the	decimal	point.

In	particular,	if	your	program	makes	at	most	 	weighings	in	each	test	case	of	every	run,	you	will	get
100	points.

Example
Suppose	the	coins	are	ordered	 	from	the	lightest	to	the	heaviest.

Function	call Returns Explanation
getMedian(4,	5,	6) 6 Coin	 	is	the	median	among	coins	 ,	 ,	and	 .
getHeaviest(3,	1,	2) 1 Coin	 	is	the	heaviest	among	coins	 ,	 ,	and	 .
getNextLightest(2,
3,	4,	5) 3 Coins	 ,	 ,	and	 	are	all	lighter	than	coin	 ,	so	the	lightest	among

them	()	is	returned.
getNextLightest(1,
6,	3,	4) 6 Coins	 	and	 	are	both	heavier	than	coin	 .	Among	coins	 	and	 ,

coin	 	is	the	lightest	one.
getHeaviest(3,	5,	6) 5 Coin	 	is	the	heaviest	among	coins	 ,	 	and	 .
getMedian(1,	5,	6) 1 Coin	 	is	the	median	among	coins	 ,	 	and	 .
getMedian(2,	4,	6) 6 Coin	 	is	the	median	among	coins	 ,	 	and	 .
answer([3,	4,	6,	2,
1,	5]) The	program	found	the	right	answer	for	this	test	case.

Sample	grader
The	sample	grader	reads	input	in	the	following	format:

line	 :	 	—-	the	number	of	test	cases

each	of	the	lines	from	 	to	 :	a	sequence	of	 	distinct	numbers	from	 	to	 :	the	order	of
the	coins	from	the	lightest	to	the	heaviest.

For	instance,	an	input	that	consists	of	two	test	cases	where	the	coins	are	ordered	 	and	
	looks	as	follows:

2
1	2	3	4	5	6
3	4	6	2	1	5

The	sample	grader	prints	the	array	that	was	passed	as	a	parameter	to	the	answer()	function.

