
B. Swapping Cities
Time limit 2 s

Memory limit 512 MB

Description
There are   cities in Indonesia, numbered from   to  . There are also   two-way roads, numbered from 
 to  . Each road connects two different cities. The  -th road connects the  -th city and the  -th city
and consumes   units of gas when traversed by car. The cities are connected such that it is possible to travel
between any pair of cities through the roads.

For each of the next   days, a pair of cities would like to establish a political relationship. In particular, on the  -th
day, the  -th city would like to establish a political relationship with the  -th city. In order to do this, the 
-th city should send a representative to go to the  -th city by car. Similarly, the  -th city should also send a
representative to go to the  -th city by car.

To avoid congestion, both cars should not meet at any point in time. In particular, both cars should not be in the
same city at the same time. Also, both cars should not traverse the same road in the opposite direction at the
same time. Additionally, cars that traverse the road must complete the road and go to the destination city (in other
words, cars are not allowed to make a U-turn in the middle of a road). However, cars are allowed to visit the
same city and road more than once. In addition, cars may also wait at any city at any point in time.

Since cars with high fuel capacity are expensive, both cities would like to choose routes for both cars such that
the maximum fuel capacity of the two cars is minimized. There are gas stations in each city with an infinite supply
of gas, thus the fuel capacity required by a car is the maximum gas consumption among all roads traversed by
the car.

Task
You have to implement  init  and  getMinimumFuelCapacity  functions.

init(N, M, U, V, W)  - This function will be called by the grader exactly once before
any  getMinimumFuelCapacity  calls.

: An integer representing the number of cities.
: An integer representing the number of roads.
: An array of   integers representing the first endpoint of the roads.
: An array of   integers representing the second endpoint of the roads.
: An array of   integers representing the gas consumption of the roads.

getMinimumFuelCapacity(X, Y)  - This function will be called by the grader exactly   times.
: An integer representing the first city.
: An integer representing the second city.

This function must return an integer representing the minimum unit of fuel capacity of the maximum fuel
capacity of the two cars such that a representative from the  -th city can go to the  -th city and a
representative from the  -th city can go to the  -th city following the rules explained in the problem
statement, or   if it is impossible to do so.

Example
In the first example,  ,  ,  ,  ,  ,  , 

,  . The example is illustrated by the following image:

N 0 N − 1 M 0
M − 1 i U [i] V [i]

W [i]

Q j
X[j] Y [j] X[j]

Y [j] Y [j]
X[j]

N
M
U M
V M
W M

Q
X
Y

X Y
Y X

−1

N = 5 M = 6 U = [0, 0, 1, 1, 1, 2] V = [1, 2, 2, 3, 4, 3] W = [4, 4, 1, 2, 10, 3] Q = 3 X =
[1, 2, 0] Y = [2, 4, 1]



The grader will initially call  init(5, 6, [0, 0, 1, 1, 1, 2], [1, 2, 2, 3, 4, 3], [4, 4, 1, 2, 10, 3]) .
After that, the grader will call the following:

getMinimumFuelCapacity(1, 2) . First, the car from the first city can go to the third city. Next, the car from
the second city can go to the first city, and the car from the third city can go to the second city. Therefore, the
maximum fuel capacity of the two cars is   units of fuel (required to go from the third city to the second city.
There is no route that requires less fuel capacity, thus the function should return  .
getMinimumFuelCapacity(2, 4) . Any car that goes to or from the fourth city should require   units of fuel

capacity, thus the function should return  .
getMinimumFuelCapacity(0, 1) . The function should return  .

In the second example,  ,  ,  ,  ,  ,  ,  ,  . The example
is illustrated by the following image:

The grader will initially call  init(3, 2, [0, 0], [1, 2], [5, 5]) . After that, the grader will call the following:

getMinimumFuelCapacity(1, 2) . It is impossible for the car in the first city to go to the second city without
meeting the other car at some time, thus the function should return  .

Constraints
.

.
.

There is at most one road between each pair of cities.
It is possible to travel between any pair of cities through the roads.

.
.

.

Subtask 1 (6 points)

Each city is an endpoint of at most two roads.

Subtask 2 (7 points)

3
3

10
10

4

N = 3 M = 2 U = [0, 0] V = [1, 2] W = [5, 5] Q = 1 X = [1] Y = [2]

−1

2 ≤ N ≤ 100 000
N − 1 ≤ M ≤ 200 000
0 ≤ U [i] < V [i] < N

1 ≤ W [i] ≤ 109

1 ≤ Q ≤ 200 000
0 ≤ X[j] < Y [j] < N



.
.

Subtask 3 (17 points)

.
.
.

Subtask 4 (20 points)

.

Subtask 5 (23 points)

.

Subtask 6 (27 points)

No additional constraints.

Sample Grader
The sample grader reads the input in the following format:

N M 
U[0] V[0] W[0] 
U[1] V[1] W[1] 
. 
. 
. 
U[M-1] V[M-1] W[M-1] 
Q 
X[0] Y[0] 
X[1] Y[1] 
. 
. 
. 
X[Q-1] Y[Q-1] 

For each  getMinimumFuelCapacity  call, the sample grader prints the value returned by the function.

M = N − 1
U [i] = 0

Q ≤ 5
N ≤ 1 000
M ≤ 2 000

Q ≤ 5

M = N − 1


