
C. Fun Tour
Time limit 2 s

Memory limit 512 MB

Description
There are attractions in the biggest theme park in Jakarta, numbered from to . These attractions are
connected by bidirectional roads such that there is a unique path between any pair of attractions through
the roads. The roads are numbered from to . The -th road connects the -th attraction and the -th
attraction and takes one hour to walk through. To avoid congestion, each attraction is an endpoint of at most
three roads.

You would like to create a tour visiting all attractions exactly once. Going through many roads when going from
an attraction to another is boring. To create a fun tour, you would like to find an ordering of all attractions, such
that the time required to visit the next attraction is not longer than the time required to visit the previous attraction.
In other words, you would like to find a sequence containing all integers from to

 exactly once such that the time required to go from the -th attraction to the -th attraction is not
longer than the time required to go from the -th attraction to the -th attraction, for .

You do not have the complete map of the attractions. Therefore, you have to ask several questions to the
information centre to create a fun tour. You can ask at most questions, each with two parameters and ,
where . Each question is either of the following:

How many hours are required to go from the -th attraction to the -th attraction? In particular, if , the
answer is .
How many attractions such that you have to visit the -th attraction to go from the -th attraction to the -
th attraction? The -th attraction will be counted as well. In particular, if , the answer is .

Task
You have to implement createFunTour function:

createFunTour(N, Q) - This function will be called by the grader exactly once.
: An integer representing the number of attractions.
: An integer representing the maximum number of questions.

This function is allowed to call two grader functions:
hoursRequired(X, Y)

: An integer representing the first attraction.
: An integer representing the second attraction.

This function returns an integer representing hours required to go from the -th attraction to the
-th attraction.

If either or is not an integer between and , then you will get a WA verdict.

attractionsBehind(X, Y)
: An integer representing the first attraction.
: An integer representing the second attraction.

This function returns an integer representing the number of attractions such that you have to
visit the -th attraction to go from the -th attraction to the -th attraction.
If either or is not an integer between and , then you will get a WA verdict.

This function must return an array of integers representing the permutation of attractions in a fun tour.

N 0 N − 1
N − 1

0 N − 2 i A[i] B[i]

P [0],P [1],… ,P [N − 1] 0 N −
1 P [i] P [i + 1]

P [i − 1] P [i] 0 < i < N − 1

Q X Y
0 ≤ X ,Y < N

X Y X = Y
0

Z Y X Z
Y X = Y N

N
Q

X
Y

X
Y

X Y 0 N − 1

X
Y

Z
Y X Z
X Y 0 N − 1

N

Example
In the following example, , , , and . The example is
illustrated by the following image:

Grader will call createFunTour(7, 400000) .

If the contestant queries hoursRequired(3, 5) , then the function will return .
If the contestant queries hoursRequired(5, 4) , then the function will return .
If the contestant queries attractionsBehind(5, 1) , then the function will return . To go from the fifth
attraction to the first, second, third, and fourth attractions, you will have to visit the first attraction.
If the contestant queries attractionsBehind(1, 5) , then the function will return .
The contestant can return since the hours required to visit the next attractions are

 in order.

Constraints
.

.
It is possible to travel between any pair of attractions through the roads.
Each attraction is an endpoint of at most three roads.

Subtask 1 (10 points)

.

Subtask 2 (16 points)

.

Subtask 3 (21 points)

There is a road connecting the -th attraction and the -th attraction, for all .

Subtask 4 (19 points)

There is at least an attraction such that for all , hoursRequired(T, i) and there exists an
interval () satisfying the following conditions:

You have to visit the -th attraction to go from the -th attraction to the -th attraction if and only if
.

If , then there must be exactly one attraction such that:
.

N = 7 Q = 400 000 A = [0, 0, 0, 1, 1, 2] B = [1, 5, 6, 2, 4, 3]

4
3

4

1
[3, 6, 4, 5, 2, 0, 1]

[4, 3, 3, 3, 2, 1]

2 ≤ N ≤ 100 000
Q = 400 000

N ≤ 17

N ≤ 500

i ⌊ 2
i−1 ⌋ 1 ≤ i < N

T 0 ≤ i < N < 30
[L[i],R[i]] 0 ≤ L[i] ≤ i ≤ R[i] < N

i T j L[i] ≤
j ≤ R[i]
L[i] < i X
L[i] ≤ X < i

There is a road connecting the -th attraction and the -th attraction.

If , then there must be exactly one attraction such that:
.

There is a road connecting the -th attraction and the -th attraction.

Subtask 5 (34 points)

No additional constraints.

Sample Grader
The sample grader reads the input in the following format:

N Q
A[0] B[0]
A[1] B[1]
.
.
.
A[N-2] B[N-2]

The sample grader writes the integers returned by createFunTour if it correctly returns an array of integers
representing the permutation of attractions in a fun tour and calls
both hoursRequired and attractionsBehind not more than times combined. Otherwise, it prints a wrong
answer message.

i X

i < R[i] Y
i < Y ≤ R[i]

i Y

N

Q

