Problem C. Find the Parts

Input file: standard input
Output file: standard output
Time limit: 8 seconds
Memory limit: $\quad 512$ mebibytes

Two robots, Carl and Clara, are a part of a secret network designed to pass messages.
Robot Clara has got a secret message. The message has a form of a black-and-white rectangle of r rows and c columns which contains $r \times c$ pixels. Each pixel is characterized by brightness: an integer from 0 to 255 (a byte) where 0 is black, 255 is white, and the numbers in between correspond to different shades of gray.
Clara does not know whether the message has some hidden meaning, but it definitely looks like "white noise": each pixel can be considered to have a random value which is independent from other pixels and uniformly distributed among the 256 possible colors.
Clara's job is to answer questions by robot Carl. Each question is formulated as a small black-and-white rectangle. The answer is the coordinates of that rectangle in the original message.

However, before answering questions, Clara has to delete the message. Unfortunately, her memory is limited to a mere 400 kibibytes, so the message may not fit there...

How should Clara act to nevertheless answer all the questions correctly?

Interaction Protocol

In this problem, your solution will be run twice on each test. Each line of input is terminated by an end-of-line character.

In input and output, bytes are integers from 0 to 255 inclusive, and they are represented in hexadecimal form: each byte is recorded by exactly two characters, and each of these characters is either a digit 0-9 or an uppercase letter A-F.

First Run

During the first run, the solution gets the message and fills Clara's memory. The first line contains the word "message". The second line contains two space-separated integers r and c : the number of rows and columns in the message ($20 \leq r, c \leq 2000$). Each of the next r lines contains c space-separated bytes: the message itself. The bytes are picked in advance, independently of each other, by a pseudorandom number generator, and all values from the range $0-255$ are equally probable.

On the first line, print an integer m, the size of the record in Clara's memory ($0 \leq m \leq 409600$). On the second line, print m space-separated bytes: the contents of that record.

Second Run

During the second run, the solution receives the record in Clara's memory, and then answers Carl's questions. The first line contains the word "parts". The second line contains an integer m, the size of the record in Clara's memory ($0 \leq m \leq 409600$). The third line contains m space-separated bytes: the contents of that record. These two lines repeat what the solution printed during the first run.

The next line contains an integer q, the number of Carl's questions ($1 \leq q \leq 10000$). Then the questions follow. Each question starts with a line containing two integers h and w : the number of rows and columns in the question's rectangle ($10 \leq h, w \leq 20$). Each of the next h lines contains w space-separated bytes: the contents of the rectangle. It is guaranteed that each given rectangle can be uniquely located in the original message. The questions are fixed in advance and do not depend on the results of the first run.

For each question, print a line containing two integers: the row and column in the original message which correspond to the location of the upper left corner of the question's rectangle. The rows are numbered 1 to r from top to bottom, and the columns are numbered 1 to c from left to right.

Example

For each test, the input during the second run depends on the solution's output during the first run.
Below we show two runs of a certain solution on the first test. The memory is shown only partially for brevity. The full version of the example can be seen in samples.zip.

standard input
message
2024
86 3E 23 7B C9 $3877827 \mathrm{l} 62 \mathrm{EA} \mathrm{CE} \mathrm{A8} \mathrm{DE} 856 \mathrm{C} 36$ B3 10 EE 856 A D5 92
$14 \mathrm{BD} 5874207 \mathrm{~B} 36 \mathrm{E} 189 \mathrm{B8} 6 \mathrm{~F} 4 \mathrm{~A}$ F4 8F 17 2E 2F OF 79 DD AA 9F 6F AD
8521 B6 2F 583787 7B 3F EE D9 7D 9A E6 AA 12 EO B6 BB 3D 72 BD 34 A 5
E5 8A 73 EE 69 BF E0 OD 5C $57 \mathrm{EF} 42 \mathrm{7B} 9107 \mathrm{~B} 87 \mathrm{D}$ A9 40 OD 4B 52 2D BC
25 F 74 F A7 184 D 76 EB EB 3E AA 3D C2 19 D 3 EE 77 BF C 138 FF C 407 C 0
CD 2B 79 C3 27 A 6 C 6 DB D3 17 EA CD 74 BC E5 4236 F 8 D 286 F 9 E 986 AA
F8 3739 BF 0 C B6 2C 9A F5 0440 BB D8 FD B4 97 2A 9A A6 D1 9E 2A 6023
7B 44572 E 47 F 9 CC AO 03 E 360 C 2 DF C1 F5 6C 59 OE 9964 3D 7D E7 75
EC C9 BE 913 B DF 1C DC 61 5C 66 1C B3 26 1C 2E 11 OD 19 BD DC 081 A 90
BF 93 A0 B9 CD 02 DD E6 49 6F $53 \mathrm{E} 2 \mathrm{2C} 3410 \mathrm{EA} 1 \mathrm{~A} 44 \mathrm{B4} 497 \mathrm{E}$ D5 B6 CB
4 A E9 C7 3F F1 FF 2433 5D 8F D4 26 2E C4 FD 81 FB 963651 F 138 BE 1E
B6 07 1A B4 F3 254 D EB 3F 687210 3B 56 F2 A7 C4 A4 28 AE 16 D0 13 CC
91 C 44 D 510439 A 813 CC 1 F 0057242 A FD EA FC EB 77 B8 E1 7D DF OD
10 D5 DE 3958 8F F6 22 8B E8 E8 D0 FB 373133 9E C8 FC 79624 F BB 96
C1 C4 8B 1A 77 E1 D2 4D 064207 A 31 A 67 EC F1 B2 0896 F 6 C 34 E 79 E 9
standard output
484
140018003339734 L 5A AA EO $86<\ldots>$ C3 4E 79 E9

