Finals 2017

sponsored by:

DCU

Problem 4: Counting paths

Every afternoon, Jack runs from his house to John's. Their houses are in an open field of size \mathbf{N} $\mathbf{x} \mathbf{M}$. Jack is trying to use a different path each day but he is not sure how many different ways to reach John's house exist.

We will represent the field using a grid of \mathbf{N} rows and \mathbf{M} columns like the following:

Jack lives in the top-left position and John in the bottom-right. Jack wants to use a different route every day but does not want to waste time he will only walk down and/or right. Also, some parts of the fields have obstacles such as rocks or houses and Jack cannot go through them (they are marked with an X in the grid).

In the previous field, the 4 valid routes are:

$* * * *$	$* \ldots$	$* \ldots$	${ }^{* *} .$.
$\ldots x^{*}$	$* . x$.	$* * x$.	${ }^{* x}$.
$\ldots{ }^{*}$	$* * *$.$* * *$.${ }^{* * *}$

Notice that all the valid routes will always have the same length ($N+M-1$).

The number of possible paths can be very large so print the result modulo 1000000007 (10^9 + 7).

Input

The first line will contain two integers \mathbf{N} and \mathbf{M}. The rows and columns of the map.

Each of the following \mathbf{N} lines will contain \mathbf{M} characters. If the character is a dot (.), this position is empty. If the character is an X, it means that there is an obstacle and Jack cannot use this cell.

AIPO Finals 2017

The top-left and bottom-right cells will never have an obstacle on them.

Limits

$2<=\mathrm{N}<=200$
$2<=\mathrm{M}<=200$

Output

Print the number of possible path between the top-left and bottom-right positions. Remember to print the result modulo 1000000007.

In most languages the modulus operator is \%.

Examples

Input example 1	Output example 1
34	4
\ldots.	
\ldots.	
\ldots.	Output example 2
Input example 2	0
3 3.	
.x.	
\ldots.	

Finals 2017
sponsored by:
Fidelity
DCU

Finals 2017
sponsored by:
A Fidelity
DCU

