Problem D. Segments

Input file:
Output file:
Time limit:
Memory limit
standard input
standard output
3 seconds
40 megabytes

There is a multiset of segments S. Difference between multiset and set is that multiset allows multiple instances of one segment, unlike a set.

Given two integer numbers n and t. You have n operations of following types that are made over the multiset:

1. Insert segment $[l, r]$ into the multiset S. The segment is assigned with $i d-$ minimum positive integer number that was not assigned to any other segment before.
2. Erase the segment with assigned number $i d$ from the multiset S. It is guaranteed that at the moment of erasing there is a segment in the multiset S with assigned number $i d$.
3. Count the number of segments from the multiset S that has at least k integer points in common with given segment $[l, r]$.

Integer point x is common for both segments $\left[l_{i}, r_{i}\right]$ and $\left[l_{j}, r_{j}\right]$, if $l_{i} \leq x \leq r_{i}$ and $l_{j} \leq x \leq r_{j}$.

Input

The first line of input contains two integer numbers n and $t\left(1 \leq n \leq 2 \cdot 10^{5}, 0 \leq t \leq 1\right)$ - number of operations and constant number. Each of next n lines describes one query.

1. Queries of first type are given in following format: $1 a_{i} b_{i}\left(0 \leq a_{i}, b_{i} \leq 2 \cdot 10^{9}\right)$.
2. Queries of second type are given in following format: $2 i d_{i}\left(1 \leq i d_{i} \leq n\right)$.
3. Queries of third type are given in following format: $3 a_{i} b_{i} k_{i}\left(0 \leq a_{i}, b_{i}, k_{i} \leq 2 \cdot 10^{9}\right)$.

Please note that end points of segments $\left[l_{i}, r_{i}\right]$ for queries of type 1 and 3 are encoded, in order to decode them you need to perform the following transformations:

$$
l_{i}=\left(a_{i} \oplus(t * \text { lastans })\right) \quad r_{i}=\left(b_{i} \oplus(t * \text { lastans })\right)
$$

where lastans - last answer to the query of type 3 (initially lastans equals to 0). If it turned out that l_{i} is greater than r_{i}, you should swap the values of l_{i} and r_{i}.

It is guaranteed that there will be at least one query of type 3 in input.
Here \oplus denotes the bitwise XOR operation.
Consider that problem has unusual memory limit.

Output

For each query of type 3 print answer in separate line.

Scoring

This task contains six subtasks:

1. $n \leq 5 \cdot 10^{3}$. Scored 7 points.
2. $n \leq 10^{5}$. First comes queries of type 1 , then of type 3 and there is no query of type 2 . Scored 15 points.
3. $n \leq 2 \cdot 10^{5}, k_{i}=1$ for all third type queries. Scored 16 points.
4. $n \leq 10^{5}, t=0$. Scored 17 points.
5. $n \leq 10^{5}$. Scored 20 points.

$$
\text { 6. } n \leq 2 \cdot 10^{5} \text {. Scored } 25 \text { points. }
$$

Examples

		standard input		standard output
6	1		0	
1	1	2	2	
3	2	4	2	0
1	3	5		
3	2	3	1	
2	1			
3	0	3	1	
6	0			
1	3	10		
1	3	5		
3	6	10	6	
2	1			
1	3	10		
3	6	4	2	

