Problem F. Birthday gift

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 megabytes

Askhat received from NurlashKO rooted tree on his birthday as a gift with n vertexes, numbered from 1 to n. Tree - connected unoriented graph without any cycles. The tree root is a vertex with number 1. Vertex v is an ancestor of vertex u if v lies on the minimal path from u to the root. Lowest common ancestor of sequence of vertexes $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$-farthest vertex from root, which is an ancestor of x_{i} for all $1 \leq i \leq k\left(\operatorname{lca}\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right)$.

In addition to the gift, NurlashKO prepared a task for Askhat. At first, he reported a sequence with length $m-\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, each number in the sequence is a vertex from the tree. There may be duplicates of vertexes in the sequence. Then he started asking q queries, each query is one of the two types:

- 1 pos v - NurlashKO asks Askhat to change the value at position pos to the value v, i.e. $a_{\text {pos }}=v$.
- $2 l r v$ - NurlashKO asks Askhat to find a pair (x, y), such that $l \leq x \leq y \leq r$ and $l c a\left(a_{x}, a_{x+1}, \ldots, a_{y}\right)=v$. Or say that there is no such pair.
Askhat has spent a lot of time on researching the gift and now he wants your help.

Input

First line of input contains three positive integer numbers n, m and q - size of the tree, length of the sequence and number of queries. Next $n-1$ lines contain edges of the tree $\left(u_{i}, v_{i}\right)\left(u_{i} \neq v_{i}\right)$. Next line contains m integer numbers, $a_{1}, a_{2}, \ldots, a_{m} .\left(1 \leq a_{i} \leq n\right)$ - sequence, which was gifted to Askhat by NurlashKO. Each of the next q lines describes a query. If first number of query equals to 1 , then it is followed by two numbers pos and $v(1 \leq \operatorname{pos} \leq m, 1 \leq v \leq n)$ - query of first type. If first number of query equals to 2 , then it is followed by three numbers l, r and $v(1 \leq l \leq r \leq m, 1 \leq v \leq n)$ - query of second type. It is guaranteed that among q queries at least one is of second type.

Output

Print two numbers x and y - answer to each query of second type, if there is no solution print out " $-1-1$ " (without quotes). If there are multiple solutions, output any of them.

Scoring

This problem consists of four subtasks, in each subtask tests satisfy constraints in statement:

1. $1 \leq n, m, q \leq 100$. Score 12 points.
2. $1 \leq n, m, q \leq 500$. Score 18 points.
3. $1 \leq n, m, q \leq 2000$. Score 26 points.
4. $1 \leq n, m, q \leq 2 \cdot 10^{5}$. Score 44 points.

Example

	standard input		standard output	
	4	4		3
1	2		3	
3	1		3	
3	4		-1	
5	3			
4	5	2	3	
2	1	3	1	
1	3	5		
2	3	4	5	
2	1	3	1	

Note

- Sequence: $[4,5,2,3]$
- Subsegment $=[4,5,2], v=1$. lca $(4,5,2)=1$, answer: $(1,3)$.
- Query on changing, new sequence: $[4,5,5,3]$
- Subsegment $=[5,3], v=5 . l c a(5)=5$, answer: $(3,3)$.
- Subsegment $=[4,5,5], v=1$. $l c a(4)=4, l c a(5)=5, l c a(4,5)=3$, $l c a(5,5)=5$, $l c a(4,5,5)=3$. There is no solution.

