Problem B
 Difference

A smallest different sequence (SDS) is a sequence of positive integers created as follows: $A_{1}=r \geq 1$. For $n>1, A_{n}=A_{n-1}+d$, where d is the smallest positive integer not yet appearing as a value in the sequence or as a difference between two values already in the sequence. For example, if $A_{1}=1$, then since 2 is the smallest number not in our sequence so far, $A_{2}=A_{1}+2=3$. Likewise $A_{3}=7$, since 1,2 and 3 are already accounted for, either as values in the sequence, or as a difference between two values. Continuing, we have $1,2,3,4,6$, and 7 accounted for, leaving 5 as our next smallest difference; thus $A_{4}=12$. The next few values in this SDS are $20,30,44,59,75,96, \ldots$ For a positive integer m, you are to determine where in the SDS m first appears, either as a value in the SDS or as a difference between two values in the SDS. In the above SDS, 12, 5, 9 and 11 first appear in step 4.

Input

Input consists of a single line containing two positive integers $A_{1} m(1 \leq r \leq 100,1 \leq m \leq 200000000)$.

Output

Display the smallest value n such that the sequence A_{1}, \ldots, A_{n} either contains m as a value in the sequence or as a difference between two values in the sequence. All answers will be ≤ 10000.

Sample Input 1
 Sample Output 1

15	4

Sample Input 2 Sample Output 2

\square

Sample Input 3
Sample Output 3
51
2

