Problem A. Modulo Ruins the Legend

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Grammy has a sequence of integers $a_{1}, a_{2}, \ldots, a_{n}$. She thinks that the elements in the sequence are too large, so she decided to add an arithmetic progression to the sequence. Formally, she can choose two non-negative integers s, d, and add $s+k d$ to a_{k} for each $k \in[1, n]$.
Since we want to ruin the legend, please tell her the minimum sum of elements modulo m after the operation. Note that you should minimize the sum after taking the modulo.

Input

The first line contains two integers $n, m\left(1 \leq n \leq 10^{5}, 1 \leq m \leq 10^{9}\right)$.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i}<m\right)$, denoting the initial sequence.

Output

Output exactly two lines.
The first line contains one integer, denoting the minimum sum of elements modulo m.
The second line contains two integers $s, d(0 \leq s, d<m)$, denoting the integers chosen by Grammy. If there are multiple solutions, output any.

Examples

standard input	standard output
624	1
114514	05
729	0
1919810	00

