Binary String

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

You are given a binary string $a_{0} a_{1} a_{2} \ldots a_{n-1}$ arranged on a cycle. Each second, you will change every 01 to 10 simultaneously. In other words, if $a_{i}=0$ and $a_{(i+1) \bmod n}=1$, you swap a_{i} and $a_{(i+1) \bmod n}$. For example, we will change 100101110 to 001010111.
You need to answer how many different strings will occur in infinite seconds, modulo 998244353.
Note: Two strings $a_{0} a_{1} \ldots a_{n-1}$ and $b_{0} b_{1} \ldots b_{n-1}$ are different if there exists an integer $i \in\{0,1, \ldots, n-1\}$ such that $a_{i} \neq b_{i}$. Thus, the cyclic shifts of a string may be different from the original string.

Input

The first line contains an integer $T\left(1 \leq T \leq 10^{6}\right)$ - the number of test cases.
For each test case, the first line contains a binary string $a_{0} a_{1} \ldots a_{n-1}\left(a_{i} \in\{0,1\}\right)$.
It is guaranteed that the sum of lengths of strings over all test cases does not exceed 10^{7}.

Output

For each test case, output one integer representing the answer in one line.

Example

	standard input	standard output
3	1	
1	3	
001001	9	
0001111		

