Binary String

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

You are given a binary string $a_0a_1a_2...a_{n-1}$ arranged on a cycle. Each second, you will change every 01 to 10 simultaneously. In other words, if $a_i = 0$ and $a_{(i+1) \mod n} = 1$, you swap a_i and $a_{(i+1) \mod n}$. For example, we will change 100101110 to 001010111.

You need to answer how many different strings will occur in infinite seconds, modulo 998244353.

Note: Two strings $a_0a_1 \dots a_{n-1}$ and $b_0b_1 \dots b_{n-1}$ are different if there exists an integer $i \in \{0, 1, \dots, n-1\}$ such that $a_i \neq b_i$. Thus, the cyclic shifts of a string may be different from the original string.

Input

The first line contains an integer T $(1 \le T \le 10^6)$ – the number of test cases.

For each test case, the first line contains a binary string $a_0a_1 \ldots a_{n-1}$ $(a_i \in \{0, 1\})$.

It is guaranteed that the sum of lengths of strings over all test cases does not exceed 10^7 .

Output

For each test case, output one integer representing the answer in one line.

Example

standard output