

The 18th Japanese Olympiad in Informatics (JOI 2018/2019) Spring Training Camp/Qualifying Trial March 19–25, 2019 (Komaba/Yoyogi, Tokyo)

Contest Day 1 - Naan

ナン (Naan)

JOI カレー店はとても長いナンを出すことで有名である.この店ではナンに L 種類の味付けを行っており,味はそれぞれ 1 以上 L 以下の整数で番号付けされている.この店の目玉商品である JOI スペシャルナンは長さが L cm であり,左から j-1 cm から j cm の部分は味 j で味付けされている $(1 \le j \le L)$.

あなたはお腹が空いたので、昼ごはんを食べに N 人で JOI カレー店に来た.みんなで 1 つの JOI スペシャルナンを食べるつもりである.人によって味の好みは異なる.i 番目 $(1 \le i \le N)$ の人は味 j $(1 \le j \le L)$ で味付けされたナンを食べると 1 cm あたり $V_{i,j}$ の幸福度を得る.

あなたは JOI スペシャルナンを N 個のピースに切り分けて、みんなに分配することにした。具体的には、以下の手順でナンを分配する。

- 1. N-1 個の有理数 $0 < X_1 < X_2 < \cdots < X_{N-1} < L$ を決める.
- 2. N 個の整数 P_1, P_2, \ldots, P_N を決める. これは 1 以上 N 以下の整数の並び替えでなければならない.
- 3. 各整数 k ($1 \le k \le N-1$) に対して,ナンの左から X_k cm の場所をそれぞれ切る.これにより,ナンは N 個のピースに切り分けられる.
- 4. 各整数 k ($1 \le k \le N$) に対して,ナンの左から X_{k-1} cm のところから X_k cm のところまでに該当するピースを P_k 番目の人に与える.ここで, $X_0 = 0$, $X_N = L$ とする.

人によって味の好みが異なるので、なるべく公平になるように分配したい。どの人も、JOI スペシャルナンを 1 人ですべて食べたときの幸福度の $\frac{1}{N}$ 以上の幸福度が得られる分配を**公平な分配**と呼ぶ。あなたの目標は公平な分配を 1 つ見つけることである。

人の味の好みが与えられたとき、公平な分配が可能かどうかを判定し、もし可能ならば公平な分配を1つ 求めるプログラムを作成せよ.

入力

入力は以下の形式で標準入力から与えられる. 入力の値はすべて整数である.

 $\begin{array}{c} N \ L \\ V_{1,1} \ V_{1,2} \cdots \ V_{1,L} \\ \vdots \\ V_{N,1} \ V_{N,2} \cdots \ V_{N,L} \end{array}$

The 18th Japanese Olympiad in Informatics (JOI 2018/2019) Spring Training Camp/Qualifying Trial March 19-25, 2019 (Komaba/Yoyogi, Tokyo)

Contest Day 1 - Naan

出力

公平な分配が不可能ならば、標準出力に -1 を出力せよ、公平な分配が可能ならば、標準出力にその分配 を表す N-1 個の有理数 X_1, \ldots, X_{N-1} と N 個の整数 P_1, \ldots, P_N を以下の形式で出力せよ.

 $A_1 B_1$ $A_2 B_2$ $A_{N-1} B_{N-1}$ $P_1 P_2 \cdots P_N$

ここで, A_k, B_k は $X_k = \frac{A_k}{B_k}$ を満たす整数の組である $(1 \le k \le N-1)$. これらの整数は「出力の制約」の条

入力の制約

- $2 \le N \le 2000$.
- $1 \le L \le 2000$.
- $1 \le V_{i,j} \le 100\,000 \ (1 \le i \le N, \ 1 \le j \le L)$.

出力の制約

公平な分配が可能な場合, 出力は以下の制約を満たさなければならない.

- $1 \le B_k \le 1\,000\,000\,000\,(1 \le k \le N-1)$.

- $1 \le B_k \le 10000000000 (1 \le k \le N 1)$.
 $0 < \frac{A_1}{B_1} < \frac{A_2}{B_2} < \dots < \frac{A_{N-1}}{B_{N-1}} < L$.
 P_1, \dots, P_N は 1 以上 N 以下の整数の並び替えである。
 出力された分配において,i 番目の人が得る幸福度が $\frac{V_{i,1} + V_{i,2} + \dots + V_{i,L}}{N}$ 以上である $(1 \le i \le N)$.

なお, A_k と B_k は互いに素でなくてもよい $(1 \le k \le N-1)$.

しい出力が存在することが証明できる.

The 18th Japanese Olympiad in Informatics (JOI 2018/2019) Spring Training Camp/Qualifying Trial March 19–25, 2019 (Komaba/Yoyogi, Tokyo)

Contest Day 1 - Naan

小課題

- 1. (5 点) N = 2.
- 2. $(24 点) N \le 6$, $V_{i,j} \le 10 (1 \le i \le N, 1 \le j \le L)$.
- 3. (71点) 追加の制約はない.

入出力例

入力例 1	出力例 1
2 5	14 5
2 7 1 8 2	2 1
3 1 4 1 5	

この入力例では,1番目の人がナンを 1 人で全部食べたときに得る幸福度が 2+7+1+8+2=20 で,2番目の人がナンを 1 人で全部食べたときに得る幸福度が 3+1+4+1+5=14 である.よって,1番目の人が $\frac{20}{2}=10$ 以上,2番目の人が $\frac{14}{2}=7$ 以上の幸福度が得られる分配が公平な分配になる.

左から $\frac{14}{5}$ cm のところでナンを分け、1 番目の人に左から 2 つめのピースを、2 番目の人に左から 1 つめのピースを与えるようにすると、1 番目の人は $1 \times \frac{1}{5} + 8 + 2 = \frac{51}{5}$ の幸福度を得て、2 番目の人は $3 + 1 + 4 \times \frac{4}{5} = \frac{36}{5}$ の幸福度を得るので、公平な分配になる。

入力例 2	出力例 2
7 1	1 7
1	2 7
2	3 7
3	4 7
4	5 7
5	6 7
6	3 1 4 2 7 6 5
7	

この入力例では、ナンの味が1種類しかないので、ナンを7等分する以外に公平な分配はない. どのピースも味が同じなので、誰がどれを食べても公平な分配になる.

The 18th Japanese Olympiad in Informatics (JOI 2018/2019) Spring Training Camp/Qualifying Trial March 19–25, 2019 (Komaba/Yoyogi, Tokyo)

Contest Day 1 - Naan

入力例 3	出力例 3
5 3	15 28
2 3 1	35 28
1 1 1	50 28
2 2 1	70 28
1 2 2	3 1 5 2 4
1 2 1	

出力において A_k と B_k が互いに素である必要はない $(1 \le k \le N-1)$.