Classic Problem

Input file: standard input
Output file: standard output
Time limit: 8 seconds
Memory limit: 1024 megabytes

Given an undirected complete graph with n vertices and m triples $P_{1}, P_{2}, \cdots, P_{m}$ where $P_{i}=\left(u_{i}, v_{i}, w_{i}\right)$, it's guaranteed that $1 \leq u_{i}<v_{i} \leq n$, and for any two triples P_{i} and P_{j} with different indices we have $\left(u_{i}, v_{i}\right) \neq\left(u_{j}, v_{j}\right)$.
For any two vertices x and y in the graph $(1 \leq x<y \leq n)$, define the weight of the edge connecting them as follows:

- If there exists a triple P_{i} satisfying $u_{i}=x$ and $v_{i}=y$, the weight of edge will be w_{i}.
- Otherwise, the weight of edge will be $|x-y|$.

Calculate the total weight of edges in the minimum spanning tree of the graph.

Input

There are multiple test cases. The first line of the input contains an integer $T\left(1 \leq T \leq 10^{5}\right)$ indicating the number of test cases. For each test case:

The first line contains two integers n and $m\left(1 \leq n \leq 10^{9}, 0 \leq m \leq 10^{5}\right)$ indicating the number of vertices in the graph and the number of triples.

For the following m lines, the i-th line contains three integers u_{i}, v_{i} and $w_{i}\left(1 \leq u_{i}<v_{i} \leq n, 0 \leq w_{i} \leq 10^{9}\right)$ indicating the i-th triple. It's guaranteed that for all $1 \leq i<j \leq m$ we have $\left(u_{i}, v_{i}\right) \neq\left(u_{j}, v_{j}\right)$.
It's guaranteed that the sum of m of all test cases will not exceed 5×10^{5}.

Output

For each test case output one line containing one integer indicating the total weight of edges in the minimum spanning tree of the graph.

Example

standard input	standard output
3	4
53	4
125	1000000003
234	
150	
50	
54	
12100000000	
131000000000	
14100000000	
151000000000	

Note

The first sample test case is illustrated as follows. The minimum spanning tree is marked by red segments.

The second sample test case is illustrated as follows. The minimum spanning tree is marked by red segments.

The third sample test case is illustrated as follows. The minimum spanning tree is marked by red segments.

