Problem L. Perfect Matchings

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 megabytes

AAA gets a complete graph of $2 n$ vertices, where every pair of distinct vertices is connected by a unique edge, as a birthday present. However, AAA thinks the complete graph is not that beautiful and he decides to delete $2 n-1$ edges that form a tree.
Now he wonders the number of different perfect matchings in the remaining graph. Note that a perfect matching is a set of n edges where no two edges share a common vertex. Since the answer may be very large, you only need to output the answer modulo 998244353.

Input

The first line contains a single integer $n(2 \leq n \leq 2000)$.
Each of the next $2 n-1$ lines contains two integers u and $v(1 \leq u, v \leq 2 n)$, representing an edge deleted from the complete graph. It is guaranteed that the given edges form a tree of $2 n$ vertices.

Output

Output a line containing a single integer, representing the answer modulo 998244353.

Examples

	standard input		standard output
2		1	
1	2		
1	3		
3	4	5	
3			
1	2		
2	3		
3	4	5	
5	6		

