Day 3: Japanese Contest, Head of Republic of Karelia Cup, Round I, Wednesday, February 1, 2017

Problem L. Ascending Tree

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
256 mebibytes

You are given a rooted tree. Each vertex of the tree is labeled with an integer. If you pay one dollar, you can change (increment or decrement) the label of a vertex by one.
You want to change the labels such that, for each vertex, its label is strictly greater than any of the labels assigned to its children. Compute the minimum cost required to satisfy this condition.

Input

The first line contains two integers: N, the number of vertices in the tree, and C_{1}, the label assigned to the root. The vertices are numbered 1 through N, and the root is vertex $1\left(1 \leq N \leq 10^{5}\right)$.
The next $N-1$ line describe non-root vertices. The i-th line contains two integers: P_{i}, the number of the parent of the vertex i, and C_{i}, the label assigned to the vertex $i\left(1 \leq P_{i}<i,-10^{9} \leq c_{i} \leq 10^{9}\right)$.

Output

Print the minimum cost on a single line.

Example

	standard input	
8	6	8
1	1	
2	1	standard output
2	3	
1	9	
5	6	
6	6	
6	2	
4	5	4
1	5	
2	5	
3	5	

Note

The figure on the left is the input configuration for the first sample. The figure on the right is a possible final configuration: the label of each parent is strictly greater than that of its child.

