Problem L. Ascending Tree

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

You are given a rooted tree. Each vertex of the tree is labeled with an integer. If you pay one dollar, you can change (increment or decrement) the label of a vertex by one.

You want to change the labels such that, for each vertex, its label is **strictly greater** than any of the labels assigned to its children. Compute the minimum cost required to satisfy this condition.

Input

The first line contains two integers: N, the number of vertices in the tree, and C_1 , the label assigned to the root. The vertices are numbered 1 through N, and the root is vertex 1 ($1 \le N \le 10^5$).

The next N-1 line describe non-root vertices. The *i*-th line contains two integers: P_i , the number of the parent of the vertex *i*, and C_i , the label assigned to the vertex *i* $(1 \le P_i < i, -10^9 \le c_i \le 10^9)$.

Output

Print the minimum cost on a single line.

Example

standard input	standard output
8 6	8
1 1	
2 1	
2 3	
1 9	
5 6	
6 6	
6 2	
4 5	4
1 5	
2 5	
3 5	

Note

The figure on the left is the input configuration for the first sample. The figure on the right is a possible final configuration: the label of each parent is strictly greater than that of its child.

