

Problem F. Find a Tree

Input file:	standard	input
Output file:	standard	output
Time limit:	4 seconds	
Memory limit:	512 mebib	ytes

Proper k-coloring of undirected graph G(V, E) is a mapping $c : V \to \{1, 2, 3, ..., k\}$ such that for each edge $(u, v) \in E$, we have $c_u \neq c_v$.

Undirected graph is k-colorable if a proper k-coloring exists for it.

Chromatic number of a graph is the smallest k such that the graph is k-colorable.

Tree is a simple acyclic undirected graph.

Alice has an undirected graph with chromatic number k, and Bob has a tree on k vertices. Bob wants to find k **different** vertices $p_1, p_2, p_3, \ldots, p_k$ in Alice's graph such that for each edge (u, v) in Bob's tree, there exists an edge (p_u, p_v) in Alice's graph. Help him.

Input

The first line contains a single integer T ($1 \le T \le 10^6$), the number of test cases to solve. Description of T testcases follows. Each testcase is described as follows.

The first line contains three integers n, m, and $k \ (1 \le n, k \le 10^6, 0 \le m \le 10^6)$, the number of vertices and edges of Alice's graph and its chromatic number, respectively.

Each of the next m lines contains a pair of integers u_i and v_i $(1 \le u_i, v_i \le n, u_i \ne v_i)$ describing an edge of Alice's graph. It is guaranteed that there are no multiple edges and that Alice's graph has chromatic number exactly equal to k.

Each of the next k - 1 lines contains a pair of integers p_i and q_i $(1 \le p_i, q_i \le k, p_i \ne q_i)$ describing an edge in Bob's tree. It is guaranteed that the given set of edges forms a tree.

It is guaranteed that the sum of n in all test cases, as well as the sum of m in all test cases, does not exceed 10^6 .

Output

For each testcase, output the answer in the following format.

If it is impossible to find the required k vertices in Alice's graph, print "No".

Otherwise, print "Yes" in the first line. In the second line, print k different integers p_i $(1 \le p_i \le n)$: the numbers of vertices in Alice's graph corresponding to the respective vertices of Bob's tree. If there are several possible answers, print any one of them.

Example

standard input	standard output
3	Yes
6 6 3	3 2 1
1 2	Yes
2 3	4 1 2 3
3 1	Yes
1 4	543
2 5	
3 6	
1 2	
2 3	
4 6 4	
1 2	
1 3	
1 4	
2 3	
2 4	
3 4	
1 2	
1 3	
1 4	
5 4 3	
1 2	
3 4	
4 5	
5 3	
1 2	
2 3	