Problem F. Find a Tree

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 mebibytes

Proper k-coloring of undirected graph $G(V, E)$ is a mapping $c: V \rightarrow\{1,2,3, \ldots, k\}$ such that for each edge $(u, v) \in E$, we have $c_{u} \neq c_{v}$.
Undirected graph is k-colorable if a proper k-coloring exists for it.
Chromatic number of a graph is the smallest k such that the graph is k-colorable.
Tree is a simple acyclic undirected graph.
Alice has an undirected graph with chromatic number k, and Bob has a tree on k vertices. Bob wants to find k different vertices $p_{1}, p_{2}, p_{3}, \ldots, p_{k}$ in Alice's graph such that for each edge (u, v) in Bob's tree, there exists an edge $\left(p_{u}, p_{v}\right)$ in Alice's graph. Help him.

Input

The first line contains a single integer $T\left(1 \leq T \leq 10^{6}\right)$, the number of test cases to solve. Description of T testcases follows. Each testcase is described as follows.

The first line contains three integers n, m, and $k\left(1 \leq n, k \leq 10^{6}, 0 \leq m \leq 10^{6}\right)$, the number of vertices and edges of Alice's graph and its chromatic number, respectively.
Each of the next m lines contains a pair of integers u_{i} and $v_{i}\left(1 \leq u_{i}, v_{i} \leq n, u_{i} \neq v_{i}\right)$ describing an edge of Alice's graph. It is guaranteed that there are no multiple edges and that Alice's graph has chromatic number exactly equal to k.
Each of the next $k-1$ lines contains a pair of integers p_{i} and $q_{i}\left(1 \leq p_{i}, q_{i} \leq k, p_{i} \neq q_{i}\right)$ describing an edge in Bob's tree. It is guaranteed that the given set of edges forms a tree.
It is guaranteed that the sum of n in all test cases, as well as the sum of m in all test cases, does not exceed 10^{6}.

Output

For each testcase, output the answer in the following format.
If it is impossible to find the required k vertices in Alice's graph, print "No".
Otherwise, print "Yes" in the first line. In the second line, print k different integers $p_{i}\left(1 \leq p_{i} \leq n\right)$: the numbers of vertices in Alice's graph corresponding to the respective vertices of Bob's tree. If there are several possible answers, print any one of them.

Example

standard input	standard output
$\begin{array}{lll} \hline 3 & \\ 6 & 6 & 3 \\ 1 & 2 & \\ 2 & 3 & \\ 3 & 1 & \\ 1 & 4 & \\ 2 & 5 & \\ 3 & 6 & \\ 1 & 2 & \\ 2 & 3 & \\ 4 & 6 & 4 \\ 1 & 2 & \\ 1 & 3 \\ 1 & 4 \\ 2 & 3 \\ 2 & 4 & \\ 3 & 4 \\ 1 & 2 & \\ 1 & 3 & \\ 1 & 4 & \\ 5 & 4 & 3 \\ 1 & 2 & \\ 3 & 4 & \\ 4 & 5 & \\ 5 & 3 & \\ 1 & 2 \\ 2 & 3 \end{array}$	Yes 321 Yes 4123 Yes 543

