Problem A. City United

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 megabytes

In ICPCCamp there are n cities which are conveniently labeled with $1, 2, \ldots, n$. There are also m bidirectional roads: the *i*-th road connects cities a_i and b_i .

Bobo chooses a non-empty subset of cities to form a union. For each two cities a and b in the union, there must exist a path from a to b passing through no cities outside the union. In other words, the union must be connected.

Bobo would like to know how many ways there are to choose such a subset, but he is afraid of large numbers. Therefore, he just wants to find this number modulo 2.

Input

The first line contains two integers n and m $(1 \le n \le 50, 0 \le m \le \frac{n(n-1)}{2})$.

The *i*-th of the following *m* lines contains two integers a_i and b_i $(1 \le a_i, b_i \le n, 0 < |a_i - b_i| \le 13)$.

Output

Output an integer which denotes the number of possible subsets modulo 2.

Examples

standard input	standard output
3 2	0
1 2	
2 3	
3 3	1
1 2	
2 3	
3 1	