Problem A. City United

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 megabytes

In ICPCCamp there are n cities which are conveniently labeled with $1,2, \ldots, n$. There are also m bidirectional roads: the i-th road connects cities a_{i} and b_{i}.
Bobo chooses a non-empty subset of cities to form a union. For each two cities a and b in the union, there must exist a path from a to b passing through no cities outside the union. In other words, the union must be connected.

Bobo would like to know how many ways there are to choose such a subset, but he is afraid of large numbers. Therefore, he just wants to find this number modulo 2.

Input

The first line contains two integers n and $m\left(1 \leq n \leq 50,0 \leq m \leq \frac{n(n-1)}{2}\right)$.
The i-th of the following m lines contains two integers a_{i} and $b_{i}\left(1 \leq a_{i}, b_{i} \leq n, 0<\left|a_{i}-b_{i}\right| \leq 13\right)$.

Output

Output an integer which denotes the number of possible subsets modulo 2 .

Examples

	standard input		
3	2	0	standard output
1	2		
2	3	1	
3	3		
1	2		
2	3	1	

