Problem F. Fast Spanning Tree

Input file:
Output file:
Time limit:
Memory limit:
standard input standard output
5 seconds 256 mebibytes

Wang Xiuhan has an initially empty undirected graph on n vertices.
Each vertex has a weight, which is a non-negative integer.
Also, he has m tuples $\left(a_{i}, b_{i}, s_{i}\right)$, where $1 \leq a_{i}, b_{i} \leq n, a_{i} \neq b_{i}$, and s_{i} is a non-negative integer.
After that, he starts the following process:

- If there is no such i that a_{i} and b_{i} lie in different connected components of the graph and (total weight of vertices in the component of $\left.a_{i}\right)+\left(\right.$ total weight of vertices in the component of $\left.b_{i}\right) \geq s_{i}$, end the process.
- Otherwise, choose the smallest such i, add an edge between a_{i} and b_{i} to the graph, write this i in the notepad, and repeat the process (but now on the larger graph).

After the process was completed, a misfortune happened... Someone stole his notepad! Can you help him restore all numbers efficiently?

Input

The first line of input contains two integers n and m : the number of vertices in Xiuhan's graph and the number of tuples he has ($1 \leq n, m \leq 300000$).
The second line contains n space-separated integers, $w_{1}, w_{2}, \ldots, w_{n}$: weights of the vertices ($0 \leq w_{i} \leq 10^{6}$). The next m lines contain a description of Xiuhan's tuples. Each of these lines contains three integers a_{i}, $b_{i}, s_{i}\left(1 \leq a_{i}, b_{i} \leq n, a_{i} \neq b_{i}, 0 \leq s_{i} \leq 10^{6}\right)$.

Output

On the first line, print one integer: the number of integers Xiuhan wrote in the notepad.
On the next line, you should write all these integers in the order he wrote them.

Examples

standard input	standard output
$\begin{array}{lllll} \hline 5 & 5 & & \\ 1 & 4 & 3 & 4 & 0 \\ 4 & 5 & 5 & & \\ 3 & 1 & 1 & & \\ 2 & 5 & 2 & & \\ 4 & 3 & 1 & & \\ 4 & 1 & 4 & \end{array}$	$\begin{array}{llll} 4 & & & \\ 2 & 3 & 1 & 4 \end{array}$
$\begin{array}{lll} 3 & 5 & \\ 3 & 2 & 2 \\ 1 & 2 & 6 \\ 1 & 2 & 6 \\ 1 & 2 & 3 \\ 1 & 2 & 6 \\ 2 & 3 & 6 \end{array}$	$\begin{aligned} & 2 \\ & 35 \end{aligned}$

