Problem A. Tree Orientation

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	64 megabytes

There are different legends for tasks. They can be long or short. They can be boring or funny. They can be understandable or not. You decide: what is this.
Given an undirected tree with n vertices. Find out how many different ways you can orient the edges of the tree so that the result graph will contain exactly m sink vertices. Sink vertex is a vertex with zero outdegree.

Input

The first line of input contains two numbers n (the total number of vertices) and m (required number of sink vertices).
Each of the following $n-1$ rows contains a description of the edges, i.e. its ends u_{i} and v_{i}.

$$
\begin{gathered}
1 \leq n \leq 1000 \\
0 \leq m \leq n \\
1 \leq u_{i}, v_{i} \leq n
\end{gathered}
$$

Output

You should output an amount of ways to orient the tree modulo $10^{9}+7$.

Example

	standard input		standard output
5	2	8	
1	2		
2	3		
3	4	5	
3			

