## Equal Sums

Input file:
Output file:
standard input
Time limit:
Memory limit: 1024 megabytes
standard output

After learning Elegia's mind on how to use generating function tricks to solve combinatorial counting problems, Little Cyan Fish would like to solve the following problem.
Little Cyan Fish has $n+m$ integers, denoted by $x_{1}, x_{2}, \cdots, x_{n}$ and $y_{1}, y_{2}, \cdots, y_{m}$. Little Cyan Fish knows that:

- $l_{i}^{(x)} \leq x_{i} \leq r_{i}^{(x)}$ for all $1 \leq i \leq n$.
- $l_{j}^{(y)} \leq y_{j} \leq r_{j}^{(y)}$ for all $1 \leq j \leq m$.

Little Cyan Fish has not decided the exact value of $x_{i}$ and $y_{j}$. He is wondering, for any pair of integers $(a, b)(1 \leq a \leq n, 1 \leq b \leq m)$, how many ways there are to set the value of $x_{i}(1 \leq i \leq a)$ and $y_{j}$ $(1 \leq j \leq b)$, such that the sum $\sum_{i=1}^{a} x_{i}$ equals $\sum_{j=1}^{b} y_{j}$. As the number can be quite large, you only need to output it modulo 998244353 .

## Input

The first line of the input contains two integers $n$ and $m(1 \leq n, m \leq 500)$.
The next $n$ lines describe the constraints of the array $x_{1}, x_{2}, \cdots, x_{n}$. The $i$-th line of these lines contains two integers $l_{i}^{(x)}$ and $r_{i}^{(x)}\left(1 \leq l_{i}^{(x)} \leq r_{i}^{(x)} \leq 500\right)$, indicating a constraint.
The next $m$ lines describe the constraints of the array $y_{1}, y_{2}, \cdots, y_{m}$. The $j$-th line of these lines contains two integers $l_{j}^{(y)}$ and $r_{j}^{(y)}\left(1 \leq l_{j}^{(y)} \leq r_{j}^{(y)} \leq 500\right)$, indicating a constraint.

## Output

Output $n$ lines, each of which contains $m$ integers. The $b$-th integer in the $a$-th line indicates the number of ways to set the values of $x_{1}, x_{2}, \cdots, x_{a}$ and $y_{1}, y_{2}, \cdots, y_{b}$ so that $\sum_{i=1}^{a} x_{i}=\sum_{j=1}^{b} y_{j}$, modulo 998244353 .

## Example

|  | standard input |  |  | standard output |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 2 | 0 | 0 |  |
| 1 | 2 | 3 | 4 | 4 |  |
| 2 | 3 |  |  |  |  |
| 1 | 4 |  |  |  |  |
| 2 | 2 |  |  |  |  |
| 1 | 3 |  |  |  |  |

## Note

For $a=1$ and $b=1$, there are two ways to set the values, as follows:

| $x_{1}$ | $y_{1}$ |
| :---: | :---: |
| 1 | 1 |
| 2 | 2 |

For $a=2$ and $b=1$, there are three ways to set the values, as follows:

| $x_{1}$ | $x_{2}$ | $y_{1}$ |
| :---: | :---: | :---: |
| 1 | 2 | 3 |
| 1 | 3 | 4 |
| 2 | 2 | 4 |

For $a=2$ and $b=2$, there are four ways to set the values, as follows:

| $x_{1}$ | $x_{2}$ | $y_{1}$ | $y_{2}$ |
| :---: | :---: | :---: | :---: |
| 1 | 2 | 1 | 2 |
| 1 | 3 | 2 | 2 |
| 2 | 2 | 2 | 2 |
| 2 | 3 | 3 | 2 |

For $a=2$ and $b=3$, there are four ways to set the values, as follows:

| $x_{1}$ | $x_{2}$ | $y_{1}$ | $y_{2}$ | $y_{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 1 | 2 | 1 |
| 2 | 2 | 1 | 2 | 1 |
| 2 | 3 | 1 | 2 | 2 |
| 2 | 3 | 2 | 2 | 1 |

