Problem C. Yet Another Balanced Coloring Problem

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
256 megabytes

You are given two rooted trees with n and m vertices, respectively. The vertices are indexed $1 \ldots n$ (resp. $1 \ldots m$) and the root is the vertex n (resp. m). Both trees have k leaves and in both trees, the leaves are precisely the vertices with indices $1 \ldots k$. Here, the root of a tree isn't considered a leaf, even if it has only one neighbor.
For each i in $1 \ldots k$, you have to choose red or blue. Then you have to paint the i-th vertex in both trees with the selected color.

After coloring the leaves, the following must hold in both trees:

- For each vertex u, the number of red leaves in the subtree of u must not differ from the number of blue leaves in the subtree of u by more than one.

Input

The first line contains one integer $t\left(1 \leq t \leq 10^{5}\right)$ - the number of test cases. t test cases follow. Each test case is described as follows.

The first line of the test case contains two integers n and $m\left(3 \leq n, m \leq 10^{5}\right)$.
The second line contains $n-1$ integers $p_{1}, \ldots, p_{n-1}\left(i<p_{i} \leq n\right)$; the i-th of them denotes an edge between i and p_{i} in the first tree.

The third line contains $m-1$ integers $q_{1}, \ldots, q_{m-1}\left(i<q_{i} \leq m\right)$; the i-th of them denotes an edge between i and q_{i} in the second tree.
It is guaranteed that in both trees, exactly the vertices $1 \ldots k$ are leaves. It is guaranteed that the sum of $n+m$ over all test cases doesn't exceed $2 \cdot 10^{5}$.

Output

For each test case, print the answer on a separate line as follows.

- If there is no solution, print IMPOSSIBLE.
- Otherwise, print a string with length k. The i-th character in the string should be B if the i-th leaf is blue, and R otherwise.

Example

standard input	standard output
2	RBBR
77	RBB
556677	
565677	
54	
4455	
444	

