Problem C. Cells Blocking

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

You are given a grid $n \times m$, and some cells are blocked.
You need to find the number of ways to block two free different cells such that there will be no path from $(1,1)$ to (n, m) which goes down or to the right by only using free cells.

Note that it is not forbidden to block cells $(1,1)$ and (n, m). They may be blocked initially as well.

Input

The first line contains two integers n and $m(1 \leq n, m \leq 3000)$: number of rows and columns in the grid. Each of the next n lines contain m characters, such that the j-th character of i-th string is equal to '.' if cell (i, j) is free and '*' if it is blocked.

Output

Print one integer: the number of ways to block two cells, such that there will be no path from $(1,1)$ to (n, m) which goes only to the right or down by only using free cells.

Examples

Note

In the first example, if you will block $(1,1)$ or $(3,3)$ and any other cell, there will be no correct path. The number of such ways is $8+8-1$.

Also, if you will block $((1,2)$ and $(2,1))$ or $((3,2)$ and $(2,3))$ there will be no correct path, so the answer is $8+8-1+2=17$.
In the second example, if you block any two cells, there will be no path, so the answer is $\binom{6}{2}=15$.
In the third example, initially, there are no paths from $(1,1)$ to (n, m), so after blocking any two cells there still will be no paths, so the answer is $\binom{4}{2}=6$.

