Problem I. Ignore Submasks

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes

You are given an array of n integers, $a_{1}, a_{2}, \ldots, a_{n}$. Each integer is between 0 and $2^{k}-1$, inclusive.
Let's say that $f(x)$ is the smallest i, such that $\left(a_{i} \& x\right) \neq a_{i}$, or 0 , if there are no such i. $(a \& b)$ is the bitwise AND operation.
Find $f(0)+f(1)+\ldots+f\left(2^{k}-1\right)$. As this value may be very large, find it modulo 998244353.

Input

The first line contains two integers: $n, k(1 \leq n \leq 100,1 \leq k \leq 60)$.
The next line contains n integers: $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i}<2^{k}\right)$.

Output

Print one integer: $f(0)+f(1)+\ldots+f\left(2^{k}-1\right)$, modulo 998244353.

Examples

standard input	standard output
21	2
01	
22	4
21	
510	1118
389144883761556	

Note

In the first example, $f(0)=2, f(1)=0$.
In the second example, $f(0)=1, f(1)=1, f(2)=2, f(3)=0$.

