

Problem I. Ignore Submasks

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

You are given an array of n integers, a_1, a_2, \ldots, a_n . Each integer is between 0 and $2^k - 1$, inclusive.

Let's say that f(x) is the smallest *i*, such that $(a_i\&x) \neq a_i$, or 0, if there are no such *i*. (a&b) is the bitwise AND operation.

Find $f(0) + f(1) + \ldots + f(2^k - 1)$. As this value may be very large, find it modulo 998 244 353.

Input

The first line contains two integers: n, k $(1 \le n \le 100, 1 \le k \le 60)$.

The next line contains n integers: $a_1, a_2, \ldots, a_n \ (0 \le a_i < 2^k)$.

Output

Print one integer: $f(0) + f(1) + \ldots + f(2^k - 1)$, modulo 998 244 353.

Examples

standard input	standard output
2 1	2
0 1	
2 2	4
2 1	
5 10	1118
389 144 883 761 556	

Note

In the first example, f(0) = 2, f(1) = 0. In the second example, f(0) = 1, f(1) = 1, f(2) = 2, f(3) = 0.