Exchanging Kubic

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
1024 megabytes

This is an interactive problem.

In computer science, the maximum sum subarray problem, also known as the maximum segment sum problem, is the task of finding a contiguous subarray with the largest sum, within a given one-dimensional array $A_{1}, A_{2}, \cdots, A_{n}$ of numbers. Formally, the task is to find indices i and j, such that the following sum is as large as possible:

$$
\sum_{i \leq k \leq j} A_{k}
$$

It is also possible to choose an empty subarray, which means you found an empty array with the sum 0 . The value of the maximum sum subarray is denoted by $M S S(A)$. For example, $\operatorname{MSS}([-2,1,4,-3,5])=7, \operatorname{MSS}([-5])=0$, and $\operatorname{MSS}([-1,-2])=0$.

Little Cyan Fish is taking a course on Kubic Theory at Powerful Kubic University (PKU). Today, Prof. Kubic asked Little Cyan Fish to play the following game with him during the course:

Prof. Kubic has a sequence of integers $a_{1}, a_{2}, \cdots, a_{n}$. Little Cyan Fish could ask Prof. Kubic at most $2 n$ questions in the following form:

- ? 1 r : query the value of $\operatorname{MSS}\left(a_{l}, a_{l+1}, \cdots, a_{r}\right)$.

The task of Little Cyan Fish is to report a sequence $b_{1}, b_{2}, \cdots, b_{n}$ satisfying:

- $M S S\left(a_{l}, a_{l+1}, \cdots, a_{r}\right)=M S S\left(b_{l}, b_{l+1}, \cdots, b_{r}\right)$ for all $1 \leq l \leq r \leq n$.

Little Cyan Fish found this task is very challenging. Can you help him to develop a strategy to finish Prof. Kubic's task?

Interaction Protocol

There are multiple test cases in a single test file. The first line of the input contains a single integer T $\left(1 \leq T \leq 10^{4}\right)$, indicating the number of the test cases.
For each test case, the first line of the input contains a single integer $n(1 \leq n \leq 2000)$.
Then, the interaction begins. You may perform at most $2 n$ queries in each test case. To perform a query, you need to print a single line "? $l r$ " ($1 \leq l \leq r \leq n$), indicating a query. Then, you need to read the result of your query from the standard input.
To give your answer, you need to print "! $b_{1} b_{2} \cdots b_{n}$ ". You need to ensure that $-10^{15} \leq b_{i} \leq 10^{15}$. Printing the answer is not considered a query and does not count toward the $2 n$ limit. After printing you answer, you need to read the next case, or terminate your program immediately.

After printing a query, do NOT forget to output end of line and flush the output. To do this, use "fflush(stdout)" or "cout.flush()" in C++, "System.out.flush()" in Java, "flush(output)" in Pascal, or "stdout.flush()" in Python.
It is guaranteed that $-10^{9} \leq a_{i} \leq 10^{9}$, and the sum of n over all test cases does not eceed 10^{4}.

In this problem, it is guaranteed that the interactor is non-adaptive. That is, the values of a_{i} are decided before the interaction process. They will not be changed based on your queries.

Example

