Problem C. Cartesian MST

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

Let G and H be two weighted undirected simple graphs. We define the cartesian product of the two graphs, $G \square H$, as the graph whose vertex set is the cartesian set product of the vertex sets of the two graphs $V(G) \times V(H)$ and in which there is an edge between vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ if and only if:

- $v_{1}=v_{2}$ and there is an edge $\left(u_{1}, u_{2}\right)$ in G. In this case, the edge $\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)$ in $G \square H$ has the same weight as the edge $\left(u_{1}, u_{2}\right)$ in G.
- or $u_{1}=u_{2}$ and there is an edge $\left(v_{1}, v_{2}\right)$ in H. In this case, the edge $\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)$ in $G \square H$ has the same weight as the edge $\left(v_{1}, v_{2}\right)$ in H.

You are given two connected graphs G and H. Compute the total weight of the minimum spanning tree of $G \square H$.

Input

The first line contains four integers $n_{1}, m_{1}, n_{2}, m_{2}\left(2 \leq n_{1}, n_{2} \leq 10^{5} ; 1 \leq m_{1}, m_{2} \leq 10^{5}\right)$: the number of vertices of G, the number of edges of G, the number of vertices of H, and the number of edges of H, respectively.
Each of the next m_{1} lines contains three integers $u_{i}, v_{i}, w_{i}\left(0 \leq u_{i}, v_{i} \leq n_{1}-1 ; 1 \leq w_{i} \leq 10^{8}\right)$, describing an edge of G between vertices u_{i} and v_{i} with weight w_{i}.
Each of the next m_{2} lines contains three integers $u_{i}, v_{i}, w_{i}\left(0 \leq u_{i}, v_{i} \leq n_{2}-1 ; 1 \leq w_{i} \leq 10^{8}\right)$, describing an edge of H between vertices u_{i} and v_{i} with weight w_{i}.
It is guaranteed that graphs G and H are simple and connected. Recall that a graph is simple if there are no edges between a vertex and itself, and there is at most one edge between any two vertices.

Output

Output one integer: the weight of the minimum spanning tree of $G \square H$.

Example

		standard input		
4	4	3	2	
0	1	3		
1	2	2		
2	3	2		
3	0	5		
0	1	1		
1	2	1		

