Problem A. Final Exam

Input file:	standard input
Output file:	standard output
Time limit:	12 seconds
Memory limit:	256 mebibytes

Rikka is a talented student.
She spends almost every day on ICPC. But the final exam is approaching.
Rikka plans to grasp- the last minute to review the courses before the exam. She has up to M minutes for review and then takes n consecutive exams. If Rikka spends x minutes on the review for the i-th exam, she would get $f_{i}(x)$ points, where $f_{i}(x)=\max \left\{0, \min \left\{d_{i}, a_{i} x^{2}+b_{i} x+c_{i}\right\}\right\}$ with the exam-specific parameters $a_{i}, b_{i}, c_{i}, d_{i}$.
Rikka wants to maximize the total score of her n exams. Note the minutes she spends in reviewing a certain course can be any non-negative real number. Also, she does not have to spend all of her M minutes on the review so that she can spend more time on ICPC.

Input

The first line contains an integer n and a real number M.
Each of the following n lines contains four real numbers $a_{i}, b_{i}, c_{i}, d_{i}$, denoting the parameters of all the n exams.

It is guaranteed that $1 \leq n \leq 100000,0<M \leq 10^{8},\left|a_{i}\right| \leq 10,\left|b_{i}\right| \leq 5000,0 \leq c_{i} \leq d_{i} \leq 5000$, and all real numbers in the input are given with exactly three decimal places.

It is guaranteed that there are at most 18 exams with $a_{i}>0$.

Output

You need to output d, the maximum total score that Rikka can get. Assuming the correct result is d^{*}, you need to ensure that $\frac{\left|d-d^{*}\right|}{\max \left\{d^{*}, 1\right\}} \leq 10^{-6}$.

Example

standard input	standard output
42.000	29.5734198185
0.0007 .0003 .00010 .000	
-1.00010 .0003 .00010 .000	
-2.00010 .0003 .00010 .000	
-3.00010 .0003 .00010 .000	

