(hacotomatain

Problem C. Wandering

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

Rikka is a talented student.
She likes to wander in the corridor while solving ICPC problems. Specifically, she will do a random walk for n steps. In the i-th random step, she will choose one of the vectors (x, y) such that $x, y \in \mathbb{R}$ and $x^{2}+y^{2} \leq R_{i}^{2}$ with equal probability. And then she will walk along the vector. In other words, if she stood at (A, B) before the random step, she will stand at $(A+x, B+y)$ afterwards. Before wandering, she stands at the door $(0,0)$.

After wandering, she was curious about the expectation of the square of Euclidean distance to point $(0,0)$. In other words, she wants to know the expected value of $x^{2}+y^{2}$, if she stands at (x, y) after all n random steps.

Input

The first line contains an integer n, the number of random steps.
The second line contains n positive integers R_{i}, the parameter of the i-th random step.
It is guaranteed that $1 \leq n \leq 50000$ and $1 \leq R_{i} \leq 1000$.

Output

You need to output d, the expected value of $x^{2}+y^{2}$. Assuming the correct result is d^{*}, you need to ensure that $\frac{\left|d-d^{*}\right|}{\max \left\{d^{*}, 1\right\}} \leq 10^{-6}$.

Example

standard input	standard output
3	3

