Day 4: PKU Contest (Common Contest 1), Tuesday, February 2, 2021

Problem F. Minimal Cut

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	1024 mebibytes

Today Rikka got an undirected graph G with n vertices and m edges. The vertices are numbered by integers from 1 to n. The i-th edge connects vertices u_{i} and v_{i}, and its weight is w_{i}.
Rikka likes Hamiltonian graphs: the ones that have a Hamiltonian cycle. Therefore, Rikka constructs a graph based on G that is surely Hamiltonian. She does so by inserting n extra edges: the i-th edge connects vertices i and $(i \bmod n+1)$, and its weight is 10^{9}.
Let $c(i, j)$ be the value of the minimal cut between the i-th and the j-th vertices. Rikka wants you to calculate

$$
\sum_{i=1}^{n} \sum_{j=i+1}^{n} c(i, j) .
$$

Given a graph $G_{0}=\langle V, E\rangle$, a set of edges $C \subseteq E$ is a cut between vertices i and j if and only if in graph $G_{1}=\langle V, E \backslash C\rangle$, vertices i and j are not (indirectly or directly) connected. The minimal cut between i and j is the cut with the minimal sum of edge weights. The value $c(i, j)$ of the minimal cut is this minimal sum itself.

Input

The first line contains two integers n and $m(3 \leq n \leq 20000,0 \leq m \leq 20000)$.
Then m lines follow. Each of them contains three integers u_{i}, v_{i}, and $w_{i}\left(1 \leq u_{i}, v_{i} \leq n, u_{i} \neq v_{i}\right.$ and $1 \leq w_{i} \leq 10000$).
Note that the graph has no self-loops, but may contain multiple edges.

Output

Output a single line with a single integer, the answer modulo 998244353.

Example

	standard input			
4	2	21067776		
1	3	2	standard output	
2	4	2		

