



## Problem F. Minimal Cut

| Input file:   | standard input  |
|---------------|-----------------|
| Output file:  | standard output |
| Time limit:   | 3 seconds       |
| Memory limit: | 1024 mebibytes  |

Today Rikka got an undirected graph G with n vertices and m edges. The vertices are numbered by integers from 1 to n. The *i*-th edge connects vertices  $u_i$  and  $v_i$ , and its weight is  $w_i$ .

Rikka likes Hamiltonian graphs: the ones that have a Hamiltonian cycle. Therefore, Rikka constructs a graph based on G that is surely Hamiltonian. She does so by inserting n extra edges: the *i*-th edge connects vertices i and  $(i \mod n + 1)$ , and its weight is  $10^9$ .

Let c(i, j) be the value of the minimal cut between the *i*-th and the *j*-th vertices. Rikka wants you to calculate

$$\sum_{i=1}^n \sum_{j=i+1}^n c(i,j).$$

Given a graph  $G_0 = \langle V, E \rangle$ , a set of edges  $C \subseteq E$  is a *cut* between vertices *i* and *j* if and only if in graph  $G_1 = \langle V, E \setminus C \rangle$ , vertices *i* and *j* are not (indirectly or directly) connected. The *minimal cut* between *i* and *j* is the cut with the minimal sum of edge weights. The *value* c(i, j) of the minimal cut is this minimal sum itself.

## Input

The first line contains two integers n and m  $(3 \le n \le 20000, 0 \le m \le 20000)$ .

Then *m* lines follow. Each of them contains three integers  $u_i$ ,  $v_i$ , and  $w_i$   $(1 \le u_i, v_i \le n, u_i \ne v_i$  and  $1 \le w_i \le 10\,000$ ).

Note that the graph has no self-loops, but may contain multiple edges.

## Output

Output a single line with a single integer, the answer modulo  $998\,244\,353$ .

## Example

| standard input | standard output |
|----------------|-----------------|
| 4 2            | 21067776        |
| 1 3 2          |                 |
| 2 4 2          |                 |
|                |                 |