
 

  

 
Secret Permutation 
 
The Scientific Committee has hidden from you a permutation ​P of all the integers from ​1 to ​N​.                  
(​3 ≤ N ≤ 256​). You need to find it. Permutation ​P​ is fixed (the grader is not adaptive). 
 
In your endeavor, you are allowed to ask queries that take as parameter another              
permutation ​V​ of all the integers from ​1​ to ​N​: 
 
query(V)​ will return ​sum(i = 1..N - 1, abs(P[V[i]] - P[V[i + 1]]))​. 
 
Performing a number of queries, you are to discover permutation ​P, ​or any other              
permutation ​P' that is indistinguishable from ​P​. Two permutations are indistinguishable if            
queried in all possible ways they both yield the same answers.  
 
 
Interaction 
This is an interactive problem. You must submit a source file with the following constraints: 
 

C / C++: 
#include "permutationc.h" 

You ​must​ include this header file in order 
to properly compile your code and link it 
with the Scientific Committee's code. 

C / C++: 
void solve(int N); 

 

Your solution to this problem must be 
written inside this function. You are free to 
write and call additional functions but 
you're ​not allowed​ to write a ​main() 
function. 

C / C++: 
int query(int V[]); 

or C++ only: 
int query(std::vector<int> V); 

Whenever you want to perform a query, 
call this function with a permutation ​V​ of all 
the integers from ​1​ to ​N​ as parameter. You 
will be graded based on the number of 
times you call this function. 

C / C++: 
void answer(int P[]); 

or C++ only : 
void answer(std::vector<int> P); 

When you're confident you've discovered 
permutation ​P​, call this function with ​P​ as a 
parameter. Calling this function will 
terminate​ the program. 

 
Note ​that both permutations ​P and ​V are represented as a ​0​-indexed ​int ​ ​array or              
std::vector<int> ​ when supplied as parameters. 
 

Secret Permutation (English) 1/3 



 

  

 
  
Example 
Sample code to illustrate the Interaction section: 
 

C: C++: 

#include "permutationc.h" 

 

void solve(int N) { 

  if (N == 2) { 

    int V[] = {1, 2}; 

    int qAns = query(V); 

    if (qAns == 1) { 

      int P[] = {1, 2}; 

      answer(P); 

    } 

  } 

} 

#include "permutation.h" 

 

void solve(int N) { 

  if (N == 2) { 

    std::vector<int> V = {1, 2}; 

    int qAns = query(V); 

    if (qAns == 1) { 

      std::vector<int> P = {1, 2}; 

      answer(P); 

    } 

  } 

} 

 
 
Sample grader 
For local testing you can download two files from CMS: ​sample_grader.cpp and            
permutation.h​. 
 
The Grader reads from Standard Input an integer ​N - the size of the hidden permutation and                 
N distinct integers - the hidden permutation. Then, the Grader calls the ​solve() function              
you must implement. 
 
At Standard Output the Grader will output: 
(a) ​for every ​query()​ call: the queried permutation and the answer to the query; 
(b) ​for the ​answer() call: the verdict (​Correct or ​Wrong Answer​), N and Q - the size of                  
the permutation and the number of queries you used. 
 
 
Subtasks 
(1) ​ 3 ≤ N ≤ 7 (15 points) 
(2) ​ 3 ≤ N ≤ 50 (35 points) 
(3) ​ 3 ≤ N ≤ 256 (50 points) 
 
 
 

Secret Permutation (English) 2/3 



 

  

 
 
Scoring 
Each of the test cases is scored as follows: 
If you fail to discover one of the correct permutations, then ​0%​ of the score is awarded. 
Otherwise, let ​Q​ be the number of queries you needed to solve the test case. 
(a) ​ ​If ​Q ≤ N​ then ​100%​ of the score is awarded. 
(b) ​ ​If ​N ≤ Q ≤ 2 * N queries then ​(100 - 40 * (Q - N) / N)% (between ​60% and        
100%​, increasing as ​Q​ decreases) of the score is awarded. 
(c) ​ ​If ​2 * N ≤ Q ≤ N​2 queries then ​(60-40 * (Q - 2 * N) / (N​2​ - 2 * N))%     
(between ​20%​ and ​60%​, increasing as ​Q​ decreases) of the score is awarded. 
(d) ​ ​If ​N​2​ ≤ Q​ then ​20%​ of the score is awarded. 
 
The total score of this task will be rounded to ​2​ decimal places. 
 
The Scientific Committee has a solution scoring over ​98​ points. 

Secret Permutation (English) 3/3 


