
Dynamic Diameter (diameter)

Day 1
Language English
Time limit: 5 seconds
Memory limit: 1024 megabytes

You are given a weighted undirected tree on n vertices and a list of q updates. Each update changes the weight of
one edge. The task is to output the diameter of the tree after each update.

(The distance between two vertices is the sum of the weights on the unique simple path that connects them. The
diameter is the largest of all those distances.)

Input

The first line contains three space-separated integers n, q and w (2 ≤ n ≤ 100, 000, 1 ≤ q ≤ 100, 000, 1 ≤ w ≤
20, 000, 000, 000, 000) – the number of vertices in the tree, the number of updates and the limit on the weights of
edges. The vertices are numbered 1 through n.

Next, n − 1 lines describing the initial tree follow. The i-th of these lines contains three space-separated integers
ai, bi, ci (1 ≤ ai, bi ≤ n, 0 ≤ ci < w) meaning that initially, there is an edge between vertices ai and bi with weight
ci. It is guaranteed that these n− 1 lines describe a tree.

Finally, q lines describing queries follow. The j-th of these lines contains two space-separated integers dj , ej (0 ≤
dj < n− 1, 0 ≤ ej < w). These two integers are then transformed according to the following scheme:

• d′j = (dj + last) mod (n− 1)

• e′j = (ej + last) mod w

where last is the result of the last query (initially last = 0). Tuple (d′j , e
′
j) represents a query which takes the

d′j + 1-th edge from the input and sets its weight to e′j .

Output

Output q lines. For each i, line i should contain the diameter of the tree after the i-th update.

Scoring

Subtask 1 (11 points): n, q ≤ 100 and w ≤ 10, 000

Subtask 2 (13 points): n, q ≤ 5, 000 and w ≤ 10, 000

Subtask 3 (7 points): w ≤ 10, 000 and the edges of the tree are exactly all valid edges of the form {1, i} (Hence,
the tree is a star centered at vertex 1.)

Subtask 4 (18 points): w ≤ 10, 000, and the edges of the tree are exactly all valid edges of the forms {i, 2i} and
{i, 2i + 1} (Hence, if we were to root the tree at vertex 1, it would be a balanced binary tree.)

Subtask 5 (24 points): it is guaranteed that after each update a longest simple path goes through vertex 1

Subtask 6 (27 points): no additional constraints

Page 1 of 3



Examples

standard input standard output

4 3 2000

1 2 100

2 3 1000

2 4 1000

2 1030

1 1020

1 890

2030

2080

2050

10 10 10000

1 9 1241

5 6 1630

10 5 1630

2 6 853

10 1 511

5 3 760

8 3 1076

4 10 1483

7 10 40

8 2051

5 6294

5 4168

7 1861

0 5244

6 5156

3 3001

8 5267

5 3102

8 3623

6164

7812

8385

6737

6738

7205

6641

7062

6581

5155

Note

The first sample is depicted in the figure below. The left-most picture shows the initial state of the graph. Each
following picture depicts the situation after an update. The weight of the updated edge is painted green, and the
diameter is red.

1

2

3 4

100

1000 1000

1

2

3 4

100

1000 1030

1

2

3 4

1050

1000 1030

1

2

3 4

1050

1000 970

The first query changes the weight of the 3rd edge, i.e. {2, 4}, to 1030. The largest distance between any pair of
vertices is 2030 – the distance between 3 and 4.

As the answer is 2030, the second query is

d′2 = (1 + 2030) mod 3 = 0

e′2 = (1020 + 2030) mod 2000 = 1050

Page 2 of 3



Hence the weight of the edge {1, 2} is changed to 1050. This causes the pair {1, 4} to be the pair with the greatest
distance, namely 2080.

The third query is decoded as
d′3 = (1 + 2080) mod 3 = 2

e′3 = (890 + 2080) mod 2000 = 970

As the weight of the edge {2, 4} decreases to 970, the most distant pair is suddenly {1, 3} with 2050.

Page 3 of 3


