Roads

The government of Treeland wants to build a new road network. There are 2N cities in Treeland. The unfinished plan of the road network already contains N road segments, each of which connects two cities with a straight line. No two road segments have a common point (including their endpoints).

Your task is to determine N-1 additional road segments satisfying the following conditions:

- 1. Every new road segment must connect two cities with a straight line.
- 2. If two segments (new or old) have a common point, then this point must be an endpoint of both segments.
- 3. The road network connects all cities: for each pair of cities there is a path consisting of segments that connects the two cities.

Input

The first line contains N, the number of existing road segments. Each of the following N lines contains four integers: x_1, y_1, x_2, y_2 , where (x_1, y_1) and (x_2, y_2) are the coordinates of the endpoints of the segment.

Output

You should print N-1 lines, each of them containing four integers, x_1, y_1, x_2, y_2 , where (x_1, y_1) and (x_2, y_2) are the coordinates of the cities that are the endpoints of a new road segment. If there are multiple solutions, your program may output any of them.

Examples

Input	Output
5	1321
1 3 3 6	2123
5 1 5 3	2333
3 3 6 5	4151
2 1 4 1	
2 3 4 2	

Constraints

 $\begin{array}{l} 2 \leq N \leq 10^5 \\ -10^7 \leq x_i, y_i \leq 10^7 \end{array}$

Time limit: 0.3 s

Memory limit: 32 MiB

Grading

Subtask	Points	Constraints
1	0	sample
2	15	all input segments are vertical
3	15	each pair of input segments are parallel
4	15	each input segment is either horizontal or vertical
5	15	$N \le 10000$
6	40	no additional constraints