

Problem E. Smol Vertex Cover

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

Given an undirected graph, find a minimum vertex cover. Crazy, right?

Let M be the size of maximum matching, and C be the size of minimum vertex cover. If minimum vertex cover is *smol*, which means $C \leq M + 1$, then find it.

Input

Each test contains multiple test cases. The first line contains the number of test cases T $(1 \le T \le 10^4)$. Description of the test cases follows.

The first line of each test case contains two integers n and m $(1 \le n \le 500, 0 \le m \le \frac{n(n-1)}{2})$ — the number of vertices and edges in the graph.

Next *m* lines describe edges of the graph, each of them contains two integers *u* and *v* $(1 \le u < v \le n)$ – vertices connected by an edge. Vertices are numbered from 1 to *n*.

It is guaranteed that the graph doesn't contain multiple edges.

It is guaranteed that the sum of n^2 over all test cases does not exceed 250 000.

Output

For each test case, if minimum vertex cover is smol, then print its size C on the first line, and then C different space-separated vertices that form a vertex cover on the second line. Otherwise print "not smol" on a single line (without quotes).

If there are several possible smol minimum vertex covers, print any one of them.

Examples

standard input	standard output
1	3
5 5	235
1 2	
2 3	
3 4	
4 5	
1 5	
2	0
3 0	
5 10	not smol
1 2	
1 3	
1 4	
15	
2 3	
2 4	
2 5	
3 4	
3 5	
4 5	

Note

Vertex cover is a set of vertices such that for each edge at least one of the endpoints belongs to the set.

Matching is a set of edges such that no two edges from it have common endpoint.

Note that a minimum vertex cover would not be accepted as a correct answer if it is not smol.