

Problem H. Excluded Min

Input file:	standard input
Output file:	standard output
Time limit:	10 seconds
Memory limit:	512 mebibytes

Ferume asked me if I can solve this faster than $O(n\sqrt{n}\log n)$. And it turns out I can! Thanks to him for creating this problem and not letting it live with boring solution.

Let S be a multiset containing non-negative integers. You can do the following operation on S arbitrary number of times (possibly zero): choose x such that there are at least two occurrences of x in S, delete one of the occurrences but insert one occurrence of (x - 1) or (x + 1) instead (you can insert (x - 1) only if it is non-negative). Let F(S) be the maximum mex you can achieve with these operations. Here mex(S)is the minimal non-negative integer which is not present in S.

You are given an array a of length n and q queries [l; r]. For each query, find $F(\{a_l, a_{l+1}, \ldots, a_r\})$.

Input

The first line contains two integers n, q $(1 \le n, q \le 5 \cdot 10^5)$ — the size of array and the number of queries.

The second line contains the array of integers a_1, a_2, \ldots, a_n itself $(0 \le a_i \le 5 \cdot 10^5)$.

Next q lines contain two integers $l_i r_i (1 \le l_i \le r_i \le n) - i$ -th query.

Output

Print answers to queries in the order they are listed in input on separate lines.

Examples

standard input	standard output
3 3	3
0 0 2	1
1 3	0
2 3	
3 3	
3 2	0
1 2 2	3
1 2	
1 3	