ICPC Training Camp: Common Contest 2, Wednesday, February 3, 2021

Problem H. Excluded Min

Input file:	standard input
Output file:	standard output
Time limit:	10 seconds
Memory limit:	512 mebibytes

Ferume asked me if I can solve this faster than $O(n \sqrt{n} \log n)$. And it turns out I can! Thanks to him for creating this problem and not letting it live with boring solution.

Let S be a multiset containing non-negative integers. You can do the following operation on S arbitrary number of times (possibly zero): choose x such that there are at least two occurrences of x in S, delete one of the occurrences but insert one occurrence of $(x-1)$ or $(x+1)$ instead (you can insert $(x-1)$ only if it is non-negative). Let $F(S)$ be the maximum mex you can achieve with these operations. Here $\operatorname{mex}(S)$ is the minimal non-negative integer which is not present in S.
You are given an array a of length n and q queries $[l ; r]$. For each query, find $F\left(\left\{a_{l}, a_{l+1}, \ldots, a_{r}\right\}\right)$.

Input

The first line contains two integers $n, q\left(1 \leq n, q \leq 5 \cdot 10^{5}\right)$ - the size of array and the number of queries. The second line contains the array of integers $a_{1}, a_{2}, \ldots, a_{n}$ itself $\left(0 \leq a_{i} \leq 5 \cdot 10^{5}\right)$.
Next q lines contain two integers $l_{i} r_{i}\left(1 \leq l_{i} \leq r_{i} \leq n\right)-i$-th query.

Output

Print answers to queries in the order they are listed in input on separate lines.

Examples

	standard input	
3	3	3
0	0	2
1	3	1
2	3	0
3	3	standard output
3	2	0
1	2	2
1	2	
1	3	

