icpc $\begin{gathered}\text { university } \\ \text { commons }\end{gathered}$

Problem H. Local Maxima

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
4 seconds
512 mebibytes

Given an $n \times m$ integer matrix A, a local maximum of A is a location $(i, j)(1 \leq i \leq n$ and $1 \leq j \leq m)$ such that $A_{i, j}$ is no smaller than any other integer on the i-th row or on the j-th column.
For example, in the 3×3 matrix

$$
\left[\begin{array}{lll}
2 & 5 & 4 \\
2 & 1 & 6 \\
2 & 2 & 2
\end{array}\right],
$$

there are three local maxima: locations $(1,2),(2,3)$, and $(3,1)$ with values 5,6 , and 2 , repectively.
An $n \times m$ integer matrix A is good if and only if it satisfies the following two conditions:

- There is exactly one local maximum in A.
- Each integer from 1 to $n \times m$ occurs exactly once in A.

Given n, m, and a prime number P, your task is to count the number of good matrices of size $n \times m$ modulo P.

Input

The first line contains three integers, n, m, and P, where $1 \leq n, m \leq 3000$ and $10^{8} \leq P \leq 10^{9}+7$. It is guaranteed that P is prime.

Output

Output a single line with a single integer: the number of good matrices modulo P.

Examples

standard input	standard output	
221000000007	16	95800320
431000000007	848530760	
100100998244353		

