Problem C. Robot

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

There is an infinitely large 2 -dimensional chessboard, in which every cell has a unique integer coordinate (x, y). The starting cell has coordinate $(0,0)$. If we start from this cell, walk x steps to the right, and then walk y steps upwards, we will arrive at cell (x, y). Note that x and y could be negative, which means walking in the opposite direction.

There is a robot that starts from cell $(0,0)$ and then executes a sequence of commands $c_{1} c_{2} \ldots c_{n}$, where each $c_{i} \in\{\mathrm{~L}, \mathrm{R}, \mathrm{D}, \mathrm{U}\}$, meaning walking one step in the direction of Left, Right, Down, Up, respectively. For example, if the sequence of commands is LRLD, then the cells traveled are $(0,0) \rightarrow(-1,0) \rightarrow(0,0) \rightarrow(-1,0) \rightarrow(-1,-1)$. We call such sequence the travel history of the robot (in this example, the history contains five elements).
For every cell (x, y) in the travel history, if it is the i-th time the robot visits this cell, then the robot earns a score of

$$
f(x, y, i)=i \cdot((|x|+1) \text { xor }(|y|+1))+i
$$

The total score is the sum of the score of every cell in the travel history. In this example, the total score is $f(0,0,1)+f(-1,0,1)+f(0,0,2)+f(-1,0,2)+f(-1,-1,1)=1+4+2+8+1=16$.
For every i from 1 to n, please answer: if we remove c_{i} from the sequence of commands, what is the total score earned by the robot after executing the remaining sequence $c_{1} c_{2} \ldots c_{i-1} c_{i+1} \ldots c_{n}$?

Input

The first line contains an integer $n\left(2 \leq n \leq 3 \cdot 10^{5}\right)$.
The second line contains a string $c_{1} c_{2} \ldots c_{n}$ of length n, denoting the sequence of commands.

Output

Output n lines. The i-th line must contain the total score if we remove command c_{i}.

Example

standard input		standard output
5	14	
	11	
	14	
	16	

