

Problem D. The Hash Table

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

There is a hash table with m slots, numbered from 0 to m-1. Initially the slots are empty.

There are n elements, numbered from 0 to n-1, which should be inserted into the hash table in this order. The hash function is $h(x) = x^2 \mod m$, so the element number i will be inserted into the slot numbered ($i^2 \mod m$). Because of the strange implementation, inserting an element into a slot costs T, where T is the number of elements this slot already contains. Please compute the total cost of inserting all these n elements into the table.

Input

The first line contains an integer t, denoting the number of test cases $(1 \le t \le 5)$. Each test case is given on a single line with two integers, n and m $(1 \le n \le 10^9, 2 \le m \le 10^9)$.

Output

For each test case, print a single line containing the answer.

Example

standard input	standard output
3	4
54	229
1234 5678	4
5 4	

Note

In the first test case, the elements 0, 1, 2, 3, 4 are inserted into slots 0, 1, 0, 1, 0 respectively, incurring costs of 0 + 0 + 1 + 1 + 2 = 4.