Problem D. The Hash Table

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes

There is a hash table with m slots, numbered from 0 to $m-1$. Initially the slots are empty.
There are n elements, numbered from 0 to $n-1$, which should be inserted into the hash table in this order.
The hash function is $h(x)=x^{2} \bmod m$, so the element number i will be inserted into the slot numbered $\left(i^{2} \bmod m\right)$.
Because of the strange implementation, inserting an element into a slot costs T, where T is the number of elements this slot already contains. Please compute the total cost of inserting all these n elements into the table.

Input

The first line contains an integer t, denoting the number of test cases $(1 \leq t \leq 5)$.
Each test case is given on a single line with two integers, n and $m\left(1 \leq n \leq 10^{9}, 2 \leq m \leq 10^{9}\right)$.

Output

For each test case, print a single line containing the answer.

Example

	standard input	
3		4
54	229	standard output
12345678	4	4

Note

In the first test case, the elements $0,1,2,3,4$ are inserted into slots $0,1,0,1,0$ respectively, incurring costs of $0+0+1+1+2=4$.

