

Problem J. Into Cactus

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

Given a tree, add as many edges as possible so that the resulting graph is a cactus graph.

A cactus graph is a graph where each edge is contained in at most one simple cycle. This graph may not contain self-loops or parallel edges.

Input

The first line contains an integer N, the size of the tree $(1 \le N \le 200\,000)$.

Each of the next N-1 lines contains two integers u and v $(1 \le u, v \le N, u \ne v)$, indicating that there is an edge between nodes u and v. It is guaranteed that the resulting graph is a tree.

Output

On the first line, output K, the maximum number of edges that can be added to the graph. On each of the next K lines, output two integers a and b $(1 \le a, b \le N, a \ne b)$, indicating that you are going to add an edge between nodes a and b. The resulting graph must be a cactus graph.

If there are several solutions with the maximum possible K, output any one of them.

Example

standard input	standard output
6	2
64	2 1
3 1	3 5
3 6	
4 5	
2 3	