
Friends

6 solutions to 6 subtasks

Solution1 Solution2 Solution3 Solution4 Solution5 Solution6
Subtask1 AC WA WA WA WA AC

Subtask2 TLE AC WA WA WA AC

Subtask3 TLE WA AC WA WA AC

Subtask4 TLE WA WA AC WA AC

Subtask5 TLE WA WA WA AC AC

Subtask6 TLE WA WA WA WA AC

Table 1-1: The result of each solution applying to each subtask.
Note: AC=Accepted, WA=Wrong Answer, TLE=Time Limit Exceeded.

Solution1

In subtask1, N is at most 10. So just apply backtracking for every person – to
chose or not to chose. The complexity is O(N ∗ 2N ), Accepted.
The sizes of N in other subtasks are too large to apply this solution, resulting
in Time Limit Exceeded with this complexity.

Solution2

In subtask2, there’re all ‘MyFriendsAreYourFriends’ relations, forming a graph
with no edge. That is equivalent to chose all persons, with complexity of O(N).
For other subtasks, there’re not only this kind of relations, so this solution does
not work and will result in Wrong Answer.

Solution3

In subtask3, there’re all ‘WeAreYourFriends’ relations, forming a complete
graph. Since every pair of two persons is connected by an edge, the answer
to this problem is equivalent to choose the maximum confidence among all peo-
ple, with complexity of O(N).
For other subtasks, there’re not only this kind of relations, so this solution does
not work and will result in Wrong Answer.

1



Solution4

In subtask4, all relations are ‘IamYourFriend’, forming a tree. So we apply the
DP-in-tree method.
Define dp[i][j] as the maximum sum for the ith node with status j, where j = 0
stands for not choosing this node and j = 1 stands for choosing this node. Then:

(1) If the ith node is leaf, then

• dp[i][j] = 0, for j = 0.

• dp[i][j] = confidence[i], for j = 1.

(2) Otherwise,

• dp[i][j] = max(dp[k][0], dp[k][1]), for j = 0 and for all k, where k is i’s
child.

• dp[i][j] = dp[k][0], for j = 1 and for all k, where k is i’s child.

The final answer is max(dp[root][0], dp[root][1]), where root stands for the root
of this tree.
For other subtasks, there’re not only ‘IamYourFriend’ relations, so this solution
will not work and will result in Wrong Answer.

Solution5

Since there’re only ‘MyFriendsAreYourFriends’ and ‘IamYourFriend’ relations,
the resulting graph contains no odd cycle. That is, we obtain a bipartite graph.
With all confidence equals to 1, the problem becomes finding maximum inde-
pendent set in a bipartite graph. As we know, a set is independent if and only
if its complement is a vertex cover. If the complement of independent set is
not a vertex cover, then there exists at least one edge with end points u and
v, which is included in the independent set, conflicting with the definition of
independent set. Trivially, a maximum independent set is the complement of
minimum vertex cover.
According to Konig’s theorem[1], in any bipartite graph, the number of edges in
a maximum matching is equal to the number of vertices in a minimum vertex
cover. Thus, we can apply the augmenting path algorithm to find out maxi-
mum cardinality matching in a bipartite graph, with complexity of O(NE) or
O(

√
NE), depending on different implementations, where E is the number of

edges.
Let k be the result of maximum cardinality bipartite matching, the answer to
this problem equals to N - k, since maximum independent set is the complement

2



of minimum vertex cover.
As for partitioning the graph into bipartite, we apply dfs to mark out the odd
points and the even points, and then put all odd points one side, even points
the other side.
In subtask 2 and 4, the relations are ‘MyFriendsAreYourFriends’ and ‘IamY-
ourFriend’. However, the confidence value in those two subtasks are not all
equals to 1. As a result, this solution can only solve subtask5 correctly, and
Wrong Answer for other subtasks.

Solution6

By using Greedy method to eliminate each person in the reverse order of building
process, we will finally get the (p, q) pair for the last person. The answer will
be max(p, q) of the last person.
Here we briefly introduce this method. Initially, we maintain two values p(x) and
q(x) for each person x, where p(x) = confidence[x] and q(x) = 0. Physically, p
stands for ‘choose’ and q stands for ‘not choose’.
To simplify the notation, we call p for p(x), q for q(x), p′ for p(y), q′ for q(y).

(1) WeAreYourFriends

To eliminate y, we can either choose x or chose y, or neither of both.

(a) Choose x: p = p+ q′.

(b) Choose y: p = p′ + q.

(c) Neither: q = q + q′. So p = max(p+ q′, p′ + q), q = q + q′.

(2) MyFriendsAreYourFriends

To eliminate y, we can choose x, choose y or choose both, or neither of
both.

3



(a) Choose x: p = p+ q′.

(b) Choose y: p = p′ + q.

(c) Choose both: p = p+ p′.

(d) Neither: q = q + q′. So p = max(p+ q′, p′ + q, p+ p′), q = q + q′.

(3) IamYourFriend

To eliminate y, we can choose x, or either choose y or choose neither.

(a) Choose x: p = p+ q′.

(b) Choose y: q = p′ + q.

(c) Neither: q = q + q′. So p = p+ q′, q = max(p′ + q, q + q′).

The complexity of this scheme is O(N). This method is capable of solving all
subtasks.

Reference

[1] Konig’s theorem
http://en.wikipedia.org/wiki/K%C3%B6nig%27s_theorem_(graph_theory)

4


	Friends
	6 solutions to 6 subtasks
	Solution1
	Solution2
	Solution3
	Solution4
	Solution5
	Solution6
	Reference


