Problem A. ASCII Automata Art

Time limit: 3 seconds Memory limit: 512 megabytes

This problem statement is quite wordy by itself and does not need a legend. You are given a regular expression and your task is to render its corresponding automaton as an ASCII art text drawing following the specification in the problem statement. Please, see examples.

A regular expression in this problem consists of uppercase letters from A to Z, special characters +, ?, *, and parenthesis that are used for grouping. An input to the problem is given by an $\langle input \rangle$ non-terminal of the following BNF grammar:

```
\langle input \rangle ::= \langle expr \rangle
\langle expr \rangle ::= \langle term \rangle \mid \langle term \rangle \; ' \mid ' \langle expr \rangle
\langle term \rangle ::= \langle atom \rangle \mid \langle atom \rangle \langle term \rangle \mid \langle term \rangle \langle atom \rangle
\langle atom \rangle ::= \langle letter \rangle \mid ' (' \langle expr \rangle \; ')' \mid \langle atom \rangle \; '+' \mid \langle atom \rangle \; '?' \mid \langle atom \rangle \; '*'
\langle letter \rangle ::= \; 'A' \mid 'B' \mid ... \mid 'Z'
```

A regular expression is rendered as an ASCII art picture using the precise rules that are given below. They recursively define a unique representation for each regular expression as a rectangular *box* of characters with the specified number of rows and columns. Empty characters of the representation, including trailing ones, must be filled with spaces.

A $\langle term \rangle$ that consists of a sequence of n uppercase letters is rendered as a box of 3 rows and 4+n columns using + and - characters to render a border on the first and the last rows and columns as shown in the example. The production rule for the $\langle term \rangle$ non-terminal in the grammar is intentionally ambiguous. The longest possible sequence of adjacent $\langle letter \rangle$ non-terminals in the regular expression must be grouped into a $\langle term \rangle$ and rendered as a single box. For example, a $\langle term \rangle$ of 'NERC' is rendered as the following 3×8 box:

```
+----+
+ NERC +
+----+
```

A $\langle term \rangle$ that consists of a sequence of $\langle atom \rangle$ non-terminals and $\langle term \rangle$ non-terminals with letters (as described above) is rendered by laying out the constituent boxes left-to-right, aligned vertically to the top, with 2 columns separating adjacent boxes. The height of the resulting box is equal to the maximum height of the constituent boxes. Each pair of adjacent boxes is joined by rendering -> characters on the 2nd row in the columns between them. For example, a $\langle term \rangle$ of 'N(E)RC' (consisting of a sequence: $\langle atom \rangle$ of 'A', $\langle atom \rangle$ of '(E)', and a letters-only $\langle term \rangle$ of 'RC') is rendered as the following 3×20 box:

```
+---+ +---+ +---+
+ N +->+ E +->+ RC +
+---+ +---+
```

An $\langle expr \rangle$ that consists of a single $\langle term \rangle$ is rendered as its $\langle term \rangle$.

An $\langle expr \rangle$ that consists of a '|'-separated sequence of $\langle term \rangle$ non-literals is rendered by laying out the corresponding $\langle term \rangle$ boxes top-to-bottom, aligned to the left, with a single row separating adjacent $\langle term \rangle$ boxes. The width of the resulting box is equal to the maximum width of the $\langle term \rangle$ boxes plus 6. There are 3 additional columns on the left, and 3 on the right. The first column and the last column use + and | characters to join the 2nd rows of all the $\langle term \rangle$ boxes from the top to the bottom one, with + placed on the 2nd row of each $\langle term \rangle$ box. The 2nd and the 3rd columns on the left and the 3rd-to-last

and the 2nd-to-last columns on the right have -> characters on the 2nd rows of the corresponding $\langle term \rangle$ boxes. Additionally, shorter $\langle term \rangle$ boxes are connected on the right with extra - characters on their 2nd rows. For example, an $\langle expr \rangle$ of 'C|ON|TEST' is rendered as the following 11×14 box:

```
+---+
+->+ C +--->+
| +---+ |
| +---+ |
| +----+ |
| +----+ |
+->+ ON +--->+
| +----+ |
| +----+ |
+->+ TEST +->+
```

An $\langle atom \rangle$ of '(' $\langle expr \rangle$ ')' is rendered as its $\langle expr \rangle$.

An $\langle atom \rangle$ of $\langle atom \rangle$ '+' is rendered as a box of its source $\langle atom \rangle$ with 2 additional rows at the bottom and 6 additional columns (3 on the left and 3 on the right). The first and the last columns, starting with the 2nd row, and the last row are filled with the connecting characters as shown in the example.

- The 2nd row starts with +-> and ends with ->+ to connect to the 2nd row of the source $\langle atom \rangle$ box.
- The last row starts with +<- to represent a backwards edge in the automaton.

For example, an $\langle atom \rangle$ of 'A+' is rendered as the following 5×11 box.

```
+---+
+->+ A +->+
| +---+ |
| |
```

An $\langle atom \rangle$ of $\langle atom \rangle$ '?' is rendered as a box of its source $\langle atom \rangle$ with 3 additional rows at the top and 6 additional columns (3 on the left and 3 on the right). The first and the last columns (from the 2nd to the 5th row) and the 2nd row are filled with the connecting characters as shown in the example.

- The first row of $\langle atom \rangle$ '?' is always empty (filled with spaces).
- The 2nd row ends with ->+ to represent an epsilon-edge in the corresponding automaton.
- The 5th row starts with +-> and ends with ->+ to connect to the 2nd row of the source $\langle atom \rangle$ box.

For example, an $\langle atom \rangle$ of 'B?' is rendered as the following 6×11 box.

An $\langle atom \rangle$ of $\langle atom \rangle$ '*' is rendered as a box of its source $\langle atom \rangle$ with 5 additional rows (3 at the top and 2 at the bottom) and 6 additional columns (3 on the left and 3 on the right). The first and the last columns, with the 2nd and the last row, are filled with the connecting characters as shown in the example.

- The first row of $\langle atom \rangle$ '*' is always empty (filled with spaces).
- The 2nd row ends with ->+ to represent an epsilon-edge in the corresponding automaton.
- The 5th row starts with +-> and ends with ->+ to connect to the 2nd row of the source $\langle atom \rangle$ box.
- The last row starts with +<- to represent a backwards edge in the automata.

For example, an $\langle atom \rangle$ of 'C*' is rendered as the following 8×11 box.

An $\langle input \rangle$ is rendered as a box that has 6 more columns than the corresponding box of the $\langle expr \rangle$, with 3 additional columns on the left, and 3 on the right. The 2nd row starts with S-> to represent the starting state of the automaton and ends with ->F to represent the final state of the automaton. See the example output.

Input

The input consists of a single line that corresponds to the $\langle input \rangle$ non-terminal of the grammar given the problem statement and has at most 100 characters in length.

Output

On the first line of the output, write two integers h and w — the height and the width, correspondingly, of the $h \times w$ box that corresponds to the given $\langle input \rangle$. On each of the next h lines, write w characters of the corresponding ASCII art rendering.

Example

