Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two equal collections of bars, each collection having at least t squares.

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two equal collections of bars, each collection having at least t squares.

Incorrect solution for partitioning all the chocolate

• Compute the number of bars of each bar size (there are 21 sizes).

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two equal collections of bars, each collection having at least t squares.

Incorrect solution for partitioning all the chocolate

- Compute the number of bars of each bar size (there are 21 sizes).
- Always greedily pair up bars so that you never have 2 or more of any size.

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two equal collections of bars, each collection having at least t squares.

Incorrect solution for partitioning all the chocolate

- Compute the number of bars of each bar size (there are 21 sizes).
- ② Always greedily pair up bars so that you never have 2 or more of any size.
- Find minimum number of breaks needed for remaining bars.

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two equal collections of bars, each collection having at least t squares.

Incorrect solution for partitioning all the chocolate

- Compute the number of bars of each bar size (there are 21 sizes).
- ② Always greedily pair up bars so that you never have 2 or more of any size.
- Find minimum number of breaks needed for remaining bars.
- \odot Can be computed efficiently by dynamic programming over 2^{21} states.

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two equal collections of bars, each collection having at least t squares.

Incorrect solution for partitioning all the chocolate

- Compute the number of bars of each bar size (there are 21 sizes).
- ② Always greedily pair up bars so that you never have 2 or more of any size.
- Find minimum number of breaks needed for remaining bars.
- lacktriangle Can be computed efficiently by dynamic programming over 2^{21} states.
- Open of always give the optimum number of breaks. Example:

 $3x2 \ 3x3 \ 1x5 \ 2x5 \ 3x5 \ 3x5$

Split one 3x5 as 3x2+3x3 and the other as 1x5+2x5 to get away with two splits.

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two equal collections of bars, each collection having at least t squares.

Incorrect solution for partitioning all the chocolate

- Ompute the number of bars of each bar size (there are 21 sizes).
- ② Always greedily pair up bars so that you never have 2 or more of any size.
- Find minimum number of breaks needed for remaining bars.
- lacktriangle Can be computed efficiently by dynamic programming over 2^{21} states.
- O Does not always give the optimum number of breaks. Example:

$$3x2 \ 3x3 \ 1x5 \ 2x5 \ 3x5 \ 3x5$$

Split one 3x5 as 3x2+3x3 and the other as 1x5+2x5 to get away with two splits.

• But this does give upper bound on number of breaks that may be needed (it is 9).

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two equal collections of bars, each collection having at least t squares.

Actual Solution

• Recursively search for the best way to break the bars, going from larger bars to smaller ones.

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two equal collections of bars, each collection having at least t squares.

Actual Solution

- Recursively search for the best way to break the bars, going from larger bars to smaller ones.
- Weep track of number of breaks made and how many squares can be partitioned among the larger bars already considered.

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two equal collections of bars, each collection having at least t squares.

Actual Solution

- Recursively search for the best way to break the bars, going from larger bars to smaller ones.
- Weep track of number of breaks made and how many squares can be partitioned among the larger bars already considered.
- Avoid recursive calls that will produce more breaks than best solution found.

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two equal collections of bars, each collection having at least t squares.

Actual Solution

- Recursively search for the best way to break the bars, going from larger bars to smaller ones.
- Weep track of number of breaks made and how many squares can be partitioned among the larger bars already considered.
- Avoid recursive calls that will produce more breaks than best solution found.
- Since there is no need for more than 9 breaks and any bar be broken in at most 5 different ways, this turns out to be fast enough.

Problem

Given list of rectangular chocolate bars, make as few breaks as possible to produce two equal collections of bars, each collection having at least t squares.

Actual Solution

- Recursively search for the best way to break the bars, going from larger bars to smaller ones.
- Weep track of number of breaks made and how many squares can be partitioned among the larger bars already considered.
- Avoid recursive calls that will produce more breaks than best solution found.
- Since there is no need for more than 9 breaks and any bar be broken in at most 5 different ways, this turns out to be fast enough.

Statistics at 4-hour mark: 17 submissions, 1 accepted, first after 01:13