Problem

Get $w \times h$ grid map and a shortest sequence of NWSE steps to reach some treasure. But all the steps have been replaced by wrong ones. Where could the treasure be?

Problem

Get $w \times h$ grid map and a shortest sequence of NWSE steps to reach some treasure. But all the steps have been replaced by wrong ones. Where could the treasure be?

Solution

• Compute distance d[p] from start to every position p in the maze using BFS.

Problem

Get $w \times h$ grid map and a shortest sequence of NWSE steps to reach some treasure. But all the steps have been replaced by wrong ones. Where could the treasure be?

- Compute distance d[p] from start to every position p in the maze using BFS.
- **②** Forbid all steps that could not have been used by the correct instruction sequence:

Problem

Get $w \times h$ grid map and a shortest sequence of NWSE steps to reach some treasure. But all the steps have been replaced by wrong ones. Where could the treasure be?

$\operatorname{Solution}$

- Compute distance d[p] from start to every position p in the maze using BFS.
- **②** Forbid all steps that could not have been used by the correct instruction sequence:
 - Forbid step $p \to q$ if not used in any shortest path (i.e., if $d[q] \neq d[p] + 1$).

Problem

Get $w \times h$ grid map and a shortest sequence of NWSE steps to reach some treasure. But all the steps have been replaced by wrong ones. Where could the treasure be?

- Compute distance d[p] from start to every position p in the maze using BFS.
- **②** Forbid all steps that could not have been used by the correct instruction sequence:
 - Forbid step $p \rightarrow q$ if not used in any shortest path (i.e., if $d[q] \neq d[p] + 1$).
 - Forbid step $p \rightarrow q$ if going from p to q means taking the same step as the d[q]'th step in the corrupted instruction sequence.

Problem

Get $w \times h$ grid map and a shortest sequence of NWSE steps to reach some treasure. But all the steps have been replaced by wrong ones. Where could the treasure be?

- **O** Compute distance d[p] from start to every position p in the maze using BFS.
- **②** Forbid all steps that could not have been used by the correct instruction sequence:
 - Forbid step $p \rightarrow q$ if not used in any shortest path (i.e., if $d[q] \neq d[p] + 1$).
 - Forbid step $p \rightarrow q$ if going from p to q means taking the same step as the d[q]'th step in the corrupted instruction sequence.
- 3 Run BFS again with these steps forbidden.

Problem

Get $w \times h$ grid map and a shortest sequence of NWSE steps to reach some treasure. But all the steps have been replaced by wrong ones. Where could the treasure be?

- Compute distance d[p] from start to every position p in the maze using BFS.
- **②** Forbid all steps that could not have been used by the correct instruction sequence:
 - Forbid step $p \rightarrow q$ if not used in any shortest path (i.e., if $d[q] \neq d[p] + 1$).
 - Forbid step $p \rightarrow q$ if going from p to q means taking the same step as the d[q]'th step in the corrupted instruction sequence.
- 3 Run BFS again with these steps forbidden.
 - All reached positions at same distance as instruction length are possible treasure locations.

Problem

Get $w \times h$ grid map and a shortest sequence of NWSE steps to reach some treasure. But all the steps have been replaced by wrong ones. Where could the treasure be?

- Compute distance d[p] from start to every position p in the maze using BFS.
- **②** Forbid all steps that could not have been used by the correct instruction sequence:
 - Forbid step $p \rightarrow q$ if not used in any shortest path (i.e., if $d[q] \neq d[p] + 1$).
 - Forbid step $p \rightarrow q$ if going from p to q means taking the same step as the d[q]'th step in the corrupted instruction sequence.
- 3 Run BFS again with these steps forbidden.
 - All reached positions at same distance as instruction length are possible treasure locations.
- Time complexity: $O(w \cdot h)$.

Problem

Get $w \times h$ grid map and a shortest sequence of NWSE steps to reach some treasure. But all the steps have been replaced by wrong ones. Where could the treasure be?

Solution

- Compute distance d[p] from start to every position p in the maze using BFS.
- **②** Forbid all steps that could not have been used by the correct instruction sequence:
 - Forbid step $p \rightarrow q$ if not used in any shortest path (i.e., if $d[q] \neq d[p] + 1$).
 - Forbid step $p \rightarrow q$ if going from p to q means taking the same step as the d[q]'th step in the corrupted instruction sequence.
- 3 Run BFS again with these steps forbidden.
 - All reached positions at same distance as instruction length are possible treasure locations.
- Time complexity: $O(w \cdot h)$.

Statistics at 4-hour mark: 325 submissions, 55 accepted, first after 00:38