Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of them are fully sent within any time frame of length x.

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of them are fully sent within any time frame of length x.

Solution

lacktriangle Messages longer than x can be ignored as they can never be intercepted

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of them are fully sent within any time frame of length x.

Solution

- lacktriangle Messages longer than x can be ignored as they can never be intercepted
 - Mostly final result can not be smaller than the longest message!

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of them are fully sent within any time frame of length x.

Solution

- lacktriangle Messages longer than x can be ignored as they can never be intercepted
 - Mostly final result can not be smaller than the longest message!
- Solve the case if at most 1 message was allowed to be intercepted

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of them are fully sent within any time frame of length x.

Solution

- lacktriangle Messages longer than x can be ignored as they can never be intercepted
 - Mostly final result can not be smaller than the longest message!
- Solve the case if at most 1 message was allowed to be intercepted
- Generalize it to at most 2 intercepted messages

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of them are fully sent within any time frame of length x.

Solution if at most 1 message is allowed to be intercepted

• If a message (regardless of length) starts at time a, the *next* message can start no earlier than time a + x + 1 - t, where t is the length of the *next* message.

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of them are fully sent within any time frame of length x.

Solution if at most 1 message is allowed to be intercepted

- If a message (regardless of length) starts at time a, the *next* message can start no earlier than time a + x + 1 t, where t is the length of the *next* message.
- 2 Repeating this, the total time to send all *n* messages becomes

$$x+1+\sum_{i=2}^{n-1}(x+1-t_i),$$

where t_i is the length of the *i*th message sent.

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of them are fully sent within any time frame of length x.

Solution if at most 1 message is allowed to be intercepted

- If a message (regardless of length) starts at time a, the *next* message can start no earlier than time a + x + 1 t, where t is the length of the *next* message.
- ② Repeating this, the total time to send all *n* messages becomes

$$x+1+\sum_{i=2}^{n-1}(x+1-t_i),$$

where t_i is the length of the *i*th message sent.

Note: length of the first and last message does not affect the total send time!

Problem

Find a way to schedule sending n messages as fast as possible but so that at most 2 of them are fully sent within any time frame of length x.

Solution if at most 1 message is allowed to be intercepted

- If a message (regardless of length) starts at time a, the *next* message can start no earlier than time a + x + 1 t, where t is the length of the *next* message.
- 2 Repeating this, the total time to send all *n* messages becomes

$$x+1+\sum_{i=2}^{n-1}(x+1-t_i),$$

where t_i is the length of the *i*th message sent.

- 3 Note: length of the first and last message does not affect the total send time!
- O By placing the two shortest messages first and last, we get the optimal solution.

Solution for the 2-message case

• Key observation: we can view this as having 2 separate channels, and we want at most 1 intercepted message in each channel (not immediately obvious!).

- Key observation: we can view this as having 2 separate channels, and we want at most 1 intercepted message in each channel (not immediately obvious!).
- ② Only thing to decide is which messages to send on which channel.

- Key observation: we can view this as having 2 separate channels, and we want at most 1 intercepted message in each channel (not immediately obvious!).
- ② Only thing to decide is which messages to send on which channel.
 - Channel with r msgs of lengths t_1, \ldots, t_r finishes in time $x+1+\sum_{i=2}^{r-1}(x+1-t_i)$.

- Key observation: we can view this as having 2 separate channels, and we want at most 1 intercepted message in each channel (not immediately obvious!).
- ② Only thing to decide is which messages to send on which channel.
 - Channel with r msgs of lengths t_1, \ldots, t_r finishes in time $x+1+\sum_{i=2}^{r-1}(x+1-t_i)$.
 - Take the 4 shortest messages and put first and last in each channel.

- Key observation: we can view this as having 2 separate channels, and we want at most 1 intercepted message in each channel (not immediately obvious!).
- ② Only thing to decide is which messages to send on which channel.
 - Channel with r msgs of lengths t_1, \ldots, t_r finishes in time $x+1+\sum_{i=2}^{r-1}(x+1-t_i)$.
 - Take the 4 shortest messages and put first and last in each channel.
 - Each remaining message of length t gets a weight w = x + 1 t.

- Key observation: we can view this as having 2 separate channels, and we want at most 1 intercepted message in each channel (not immediately obvious!).
- ② Only thing to decide is which messages to send on which channel.
 - Channel with r msgs of lengths t_1, \ldots, t_r finishes in time $x+1+\sum_{i=2}^{r-1}(x+1-t_i)$.
 - Take the 4 shortest messages and put first and last in each channel.
 - Each remaining message of length t gets a weight w = x + 1 t.
- **3** We have m=n-4 weights w_1,\ldots,w_m of total weight $W=w_1+\ldots+w_n$.

- Key observation: we can view this as having 2 separate channels, and we want at most 1 intercepted message in each channel (not immediately obvious!).
- ② Only thing to decide is which messages to send on which channel.
 - Channel with r msgs of lengths t_1, \ldots, t_r finishes in time $x+1+\sum_{i=2}^{r-1}(x+1-t_i)$.
 - Take the 4 shortest messages and put first and last in each channel.
 - Each remaining message of length t gets a weight w = x + 1 t.
- **3** We have m = n 4 weights w_1, \ldots, w_m of total weight $W = w_1 + \ldots + w_n$.
- Want to find a subset $S \subseteq [m]$ such that $\sum_{i \in S} w_i$ is as close to W/2 as possible.

- Key observation: we can view this as having 2 separate channels, and we want at most 1 intercepted message in each channel (not immediately obvious!).
- ② Only thing to decide is which messages to send on which channel.
 - Channel with r msgs of lengths t_1, \ldots, t_r finishes in time $x+1+\sum_{i=2}^{r-1}(x+1-t_i)$.
 - Take the 4 shortest messages and put first and last in each channel.
 - Each remaining message of length t gets a weight w = x + 1 t.
- **3** We have m = n 4 weights w_1, \ldots, w_m of total weight $W = w_1 + \ldots + w_n$.
- Want to find a subset $S \subseteq [m]$ such that $\sum_{i \in S} w_i$ is as close to W/2 as possible.
- This is a Subset Sum/Knapsack problem.

- Key observation: we can view this as having 2 separate channels, and we want at most 1 intercepted message in each channel (not immediately obvious!).
- ② Only thing to decide is which messages to send on which channel.
 - Channel with r msgs of lengths t_1, \ldots, t_r finishes in time $x+1+\sum_{i=2}^{r-1}(x+1-t_i)$.
 - Take the 4 shortest messages and put first and last in each channel.
 - Each remaining message of length t gets a weight w = x + 1 t.
- **3** We have m = n 4 weights w_1, \ldots, w_m of total weight $W = w_1 + \ldots + w_n$.
- Want to find a subset $S \subseteq [m]$ such that $\sum_{i \in S} w_i$ is as close to W/2 as possible.
- This is a Subset Sum/Knapsack problem.
 - Classic dynprog algorithm solves it in time $O(nW) = O(n^2x)$. Too slow.

- Key observation: we can view this as having 2 separate channels, and we want at most 1 intercepted message in each channel (not immediately obvious!).
- ② Only thing to decide is which messages to send on which channel.
 - Channel with r msgs of lengths t_1, \ldots, t_r finishes in time $x+1+\sum_{i=2}^{r-1}(x+1-t_i)$.
 - Take the 4 shortest messages and put first and last in each channel.
 - Each remaining message of length t gets a weight w = x + 1 t.
- **3** We have m = n 4 weights w_1, \ldots, w_m of total weight $W = w_1 + \ldots + w_n$.
- Want to find a subset $S \subseteq [m]$ such that $\sum_{i \in S} w_i$ is as close to W/2 as possible.
- This is a Subset Sum/Knapsack problem.
 - Classic dynprog algorithm solves it in time $O(nW) = O(n^2x)$. Too slow.
 - Can be solved in $O(n \cdot x)$ time (Pisinger, 1999).

Solution for the 2-message case

- Key observation: we can view this as having 2 separate channels, and we want at most 1 intercepted message in each channel (not immediately obvious!).
- ② Only thing to decide is which messages to send on which channel.
 - Channel with r msgs of lengths t_1, \ldots, t_r finishes in time $x+1+\sum_{i=2}^{r-1}(x+1-t_i)$.
 - Take the 4 shortest messages and put first and last in each channel.
 - Each remaining message of length t gets a weight w = x + 1 t.
- **3** We have m = n 4 weights w_1, \ldots, w_m of total weight $W = w_1 + \ldots + w_n$.
- Want to find a subset $S \subseteq [m]$ such that $\sum_{i \in S} w_i$ is as close to W/2 as possible.
- This is a Subset Sum/Knapsack problem.
 - Classic dynprog algorithm solves it in time $O(nW) = O(n^2x)$. Too slow.
 - Can be solved in $O(n \cdot x)$ time (Pisinger, 1999).

Statistics at 4-hour mark: 19 submissions, 0 accepted