Problem F. Find the MST for Grid

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: $\quad 512$ mebibytes

Consider a grid graph: the vertices are lined up into a grid of H rows by W columns. Let us denote the vertex in the i-th row and j-th column as (i, j).
To define the weights of the graph edges, we will consider four non-decreasing sequences, A, B, C, and D, consisting of $H-1, W, H$, and $W-1$ positive integers, respectively:

- there is a bidirectional edge connecting vertices (i, j) and $(i+1, j)$ of weight $A_{i}+B_{j}$ for all i and j such that $1 \leq i \leq H-1$ and $1 \leq j \leq W$;
- there is a bidirectional edge connecting vertices (i, j) and $(i, j+1)$ of weight $C_{i}+D_{j}$ for all i and j such that $1 \leq i \leq H$ and $1 \leq j \leq W-1$;
- the graph contains no other edges.

Find the total weight of the edges in the minimal spanning tree of this graph.

Input

The first line of input contains two positive integers H and $W\left(2 \leq H, W \leq 10^{5}\right)$.
The second line contains $H-1$ integers A_{i} : the elements of the sequence A.
The third line contains W integers B_{i} : the elements of the sequence B.
The fourth line contains H integers C_{i} : the elements of the sequence C.
The fifth line contains $W-1$ integers D_{i} : the elements of the sequence D.
It is guaranteed that $A_{i-1} \leq A_{i}, B_{i-1} \leq B_{i}, C_{i-1} \leq C_{i}$, and $D_{i-1} \leq D_{i}$ for $i>1$, and additionally, $1 \leq A_{i}, B_{i}, C_{i}, D_{i} \leq 10^{6}$.

Output

Print the total weight of the edges in the minimal spanning tree of the given graph. Note that the answer may not fit into a 32-bit integer.

Examples

	standard input		standard output
2	3	17	
1	3	6	
1	4		
1	2	173	
4	3		
1	13	15	
3	6	11	
3	6	6	11
9	17		

