Problem M. You be The Judge, Again

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 mebibytes

You are a judge, again! The contest you're judging includes the following problem:
"You have one L-shaped triomino of each of $\frac{4^{n}-1}{3}$ different colors. Tile a 2^{n} by 2^{n} grid using each of these triominos such that there is exactly one blank square and all other squares are covered by exactly one square of such a triomino. All triominos must be used."

Your team is to write a checker for this problem. Validation of the input values and format has already taken place. You will be given a purported tiling of a 2^{n} by 2^{n} grid, where each square in the grid is either 0 or a positive integer from 1 to $\frac{4^{n}-1}{3}$ representing one of the colors. Determine if it is, indeed, a covering of the grid with $\frac{4^{n}-1}{3}$ unique triominos and a single empty space.
L-shaped triominos look like this:

Input

The first line of input contains a single integer $n(1 \leq n \leq 10)$, which is the n of the description.
Each of the next 2^{n} lines contains 2^{n} integers $x\left(0 \leq x \leq \frac{4^{n}-1}{3}\right)$, where 0 represents an empty space, and any positive number is a unique identifier of a triomino.

Output

Output a single integer, which is 1 if the given grid is covered with $\frac{4^{n}-1}{3}$ unique triominos and a single empty space. Otherwise, output 0 .

Examples

				standard input	
2			1	standard output	
1	1	2	2		
1	3	3	2		
4	4	3	5		
4	0	5	5		0
1					
1	1				
1	1				

