Problem J. Joke

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Consider two permutations of integers from 1 to n : p and q. Let us call a binary string s of length n satisfying if there exists a matrix a with dimensions $2 \times n$ such that:

- Every integer from 1 to $2 n$ appears exactly once in the matrix.
- The elements in the first row are ordered correspondingly to permutation p. More formally, $a_{1, i}<a_{1, j} \Longleftrightarrow p_{i}<p_{j}$ for $1 \leq i<j \leq n$.
- The elements in the second row are ordered correspondingly to permutation q. More formally, $a_{2, i}<a_{2, j} \Longleftrightarrow q_{i}<q_{j}$ for $1 \leq i<j \leq n$.
- For every i from 1 to n, we have $a_{1, i}<a_{2, i} \Longleftrightarrow s_{i}=0$.

For two permutations p and q of size n, let us define $f(p, q)$ as the number of satisfying strings s for them.
You are given all elements of p, and several elements of q, but forgot others. Find the sum of $f(p, q)$ over all permutations q with the given known elements, modulo 998244353 .

Input

The first line of the input contains a single integer $n(1 \leq n \leq 100)$.
The second line of the input contains n integers $p_{1}, p_{2}, \ldots, p_{n}\left(1 \leq p_{i} \leq n\right.$, all p_{i} are distinct), a permutation of numbers from 1 to n.

The second line of the input contains n integers $q_{1}, q_{2}, \ldots, q_{n}\left(0 \leq q_{i} \leq n, q_{i} \neq q_{j}\right.$ when $q_{i} \neq 0$ and $\left.q_{j} \neq 0\right)$. If $q_{i} \neq 0$, the respective element is given. If $q_{i}=0$, its value is forgotten. All given elements are distinct.

Output

Output the sum of $f(p, q)$ over all valid permutations q modulo 998244353 .

Examples

standard input	standard output
$\begin{array}{ll} \hline 2 & \\ 1 & 2 \\ 2 & 1 \end{array}$	3
$\begin{array}{\|llll} \hline 4 & & & \\ 4 & 3 & 2 & 1 \\ 4 & 3 & 2 & 1 \end{array}$	16
$\begin{array}{lllll} 5 & & & & \\ 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{array}$	1546
$\begin{array}{llllll} \hline 6 & & & & \\ 1 & 6 & 2 & 5 & 3 & 4 \\ 0 & 1 & 0 & 2 & 0 & 3 \end{array}$	52

