

Problem J. Joke

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Consider two permutations of integers from 1 to n: p and q. Let us call a binary string s of length n satisfying if there exists a matrix a with dimensions $2 \times n$ such that:

- Every integer from 1 to 2n appears exactly once in the matrix.
- The elements in the first row are ordered correspondingly to permutation p. More formally, $a_{1,i} < a_{1,j} \iff p_i < p_j$ for $1 \le i < j \le n$.
- The elements in the second row are ordered correspondingly to permutation q. More formally, $a_{2,i} < a_{2,j} \iff q_i < q_j$ for $1 \le i < j \le n$.
- For every *i* from 1 to *n*, we have $a_{1,i} < a_{2,i} \iff s_i = 0$.

For two permutations p and q of size n, let us define f(p,q) as the number of satisfying strings s for them. You are given all elements of p, and several elements of q, but forgot others. Find the sum of f(p,q) over all permutations q with the given known elements, modulo 998 244 353.

Input

The first line of the input contains a single integer $n \ (1 \le n \le 100)$.

The second line of the input contains n integers p_1, p_2, \ldots, p_n ($1 \le p_i \le n$, all p_i are distinct), a permutation of numbers from 1 to n.

The second line of the input contains n integers q_1, q_2, \ldots, q_n $(0 \le q_i \le n, q_i \ne q_j$ when $q_i \ne 0$ and $q_j \ne 0$). If $q_i \ne 0$, the respective element is given. If $q_i = 0$, its value is forgotten. All given elements are distinct.

Output

Output the sum of f(p,q) over all valid permutations q modulo 998 244 353.

Examples

standard input	standard output
2	3
1 2	
2 1	
4	16
4 3 2 1	
4 3 2 1	
5	1546
1 2 3 4 5	
0 0 0 0 0	
6	52
162534	
0 1 0 2 0 3	