Problem K. K-onstruction

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

You are given an integer K such that $1 \leq K \leq 10^{6}$. Construct any array A of numbers for which the following properties hold:

- The size of A is between 1 and 30 ;
- All elements are integers between -10^{16} and 10^{16};
- Let N be the size of A. Then there are exactly K subsets S (possibly empty) of set $\{1,2, \ldots, N\}$ for which $\sum_{i \in S} A_{i}=0$.

It can be shown that, under the constraints above, such array A always exists.

Input

The first line contains a single integer $t(1 \leq t \leq 1000)$, the number of test cases.
Each of the next t lines contains a single integer $K\left(1 \leq K \leq 10^{6}\right)$.

Output

For each test case, on the first line, output a single integer $N(1 \leq N \leq 30)$, the size of your array.
On the second line, output N integers $A_{1}, A_{2}, \ldots, A_{N}\left(-10^{16} \leq A_{i} \leq 10^{16}\right)$, the elements of the array.

Example

	standard input				standard output	
2	5					
3		2021	-1000	-1021	-2000	-21
16	4					
	0	0	0	0		

Note

Note that the elements of the array don't have to be distinct.

