Problem B. Hamiltonian Path

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
1024 mebibytes

You are given a directed graph of n vertices numbered from 0 to $n-1$. You are also given two integers p and q such that $1 \leq p, q \leq n$.
The edges of the graph are constructed as follows: for every vertex i,

- if $i+p<n$, then there is an edge from i to $i+p$;
- if $i-q \geq 0$, then there is an edge from i to $i-q$.

Obviously, the graph has exactly $(n-p)+(n-q)$ edges.
Find any Hamiltonian path in this graph, or determine that it does not exist.
Recall that a Hamiltonian path is a path that visits every vertex exactly once.

Input

The first line of input contains an integer $T\left(1 \leq T \leq 10^{4}\right)$, the number of test cases.
Each test case consists of a single line containing three integers: n, p, and $q\left(1 \leq p, q \leq n \leq 10^{6}\right)$.
It is guaranteed that the sum of n over all test cases does not exceed 10^{6}.

Output

For each test case, print a single line containing n integers that represent the order of vertices in a Hamiltonian path, or print -1 if it does not exist.

If there are multiple solutions, print any one of them.

Example

standard input	standard output
3	20314
532	-1
824	0510381611492712
1357	

