
International Olympiad in Informatics 2011

22–29 July 2011, Pattaya City, Thailand

Day 1 Solution

Task: Garden

Task: Garden

Proposed by: Normunds Vilcins

In this task, we would like to compute the number of possible paths that could have led each
group to the specified intersection P , using the given number of steps K.

Notice that each path is completely determined by its initial intersection. Thus, to compute
the number of possible paths, we only need to check whether each intersection, if used as an initial
intersection, would bring the group to intersection P after exactly K steps. As we need to check
all N initial intersections for each of the Q groups, an efficient algorithm for checking whether
the group will be at intersection P after exactly K steps is needed, which will be discussed in
following sections.

1 Graph construction

This problem can be treated as a graph problem. A natural approach is to construct a graph G
containing the following information: for each intersection, where the group would move to. Since
they may take only one of the two most beautiful trails, we will use two vertices to represent
an intersection. Namely, for the i-th intersection, let vi represent this intersection where the
next chosen trail must be the most beautiful trail incident to it, and v′i represent this same
intersection but where the next chosen trail must be the second most beautiful trail incident to
it (or the most beautiful trail if no alternative is available). In other words, vi represents the i-th
intersection when the last taken trail is not the most beautiful trail incident to this intersection,
and v′i represents this intersection when the last taken trial is the most beautiful one incident to
this intersection.

Now for each vertex, we add an outgoing edge representing the most beautiful or second
most beautiful trail, according to the conditions mentioned above. With this, G will contain 2N
vertices, and exactly one outgoing edge from each vertex.

The construction of the graph G takes O(M +N) running time by first creating 2N vertices,
then scanning through the array R representing trails, and conditionally adding these edges to
G under the described conditions.

2 An O(M + NKQ) solution

A simple way to check where the couple would arrive after K steps is to simulate their path, for
each intersection as an initial vertex. Since they always choose the most beautiful trail in the
first steps, the corresponding starting vertices in G are v0, . . . , vN−1.

To simulate their walk, we simply start at some vertex vs, then follow the unique outgoing
edge for that vertex, and repeat this process for K steps. Since the vertices corresponding to

1



International Olympiad in Informatics 2011

22–29 July 2011, Pattaya City, Thailand

Day 1 Solution

Task: Garden

intersection P are vP and v′P , then this path ends at this intersection if and only if after K steps,
we stop at one of these vertices. That is, to find the number of possible paths, we simulate their
walk for all possible initial vertices vi, and count the number of starting vertices that end at vP

or v′P after K steps.
Clearly, this process takes O(K) total running time for each starting vertex. Since there are

N possible starting vertices and Q questions, this algorithm takes O(M + NKQ) running time,
including graph construction. This running time is sufficient to fully solve subtask 1.

3 An O(M + NQ log K) solution

As K becomes large in subtask 2, we need a better way to simulate the algorithm mentioned in
the previous section. Notice that the edges in G represents 1-step traveling. To simulate faster,
we will use the permutation-composition approach.

We first precompute the result of 2k-step traveling from each vertex in G, where k = 0, 1, 2, . . .,
using a technique similar to successive squaring. Let Tv,2k represents the vertex we arrive at after
traveling from v for 2k steps. Then for k = 0, 1, 2, . . ., we can compute Tv,2k easily: If k = 0, then
the destination is specified in G; otherwise, we compose the two paths of length 2k−1 using the
formula Tv,2k = TT

v,2k−1 ,2k−1 . In other words, traveling 2k steps from v is the same as traveling

2k−1 steps from v, then from that vertex, continue for 2k−1 more steps.
Then, notice that for each value of K, we can decompose this number into sum of distinct,

non-negative powers of two. Suppose that K = 2k1 + 2k2 + · · · + 2kl where k1 < k2 < · · · <
kl for some positive integer l. Then the result of traveling k steps from v can be found by
simply composing travelings of 2k1 , 2k2 , · · · , 2kl that we have precomputed. Using this technique,
therefore, we can compute the destination for each starting intersection in O(log K) running time.
Note that since K < 230, we only need to compute Tv,2k for k = 0, 1, 2, . . . , 29.

This algorithm takes O(N log K) extra running time to compute the values of Tv,2k , as each
of them can be computed in constant time. Then, we can find the destination of each path in
O(log K). Thus, the total running time is O(M + NQ log K), which is sufficient to fully solve
subtask 2.

4 An O(M + NQ) solution

Let us consider a more general question of determining whether a path starting at vertex s with
length K ends at vertex t. Recall that each vertex in G has exactly one outgoing edge. So, from
any initial vertex, by simply following these edges, we will eventually enter a cycle. Thus, if we
start at s, exactly one of the following conditions are met:

• We never reach t.

• We reach t just once exactly after some number of steps F . In this case, t is reachable, but
is not on any cycle.

• We reach t for the first time after some number of steps F , and enter it every C steps. In
this case, t is reachable, and is on a cycle of size C.

2



International Olympiad in Informatics 2011

22–29 July 2011, Pattaya City, Thailand

Day 1 Solution

Task: Garden

For our purpose of solving the problem, s can vary depending on our initial vertex; namely,
it can be any of the vertices vi for i = 0, 1, . . . , N − 1. However, t can only be vertices vP and
v′P . Since t does not vary very much, it is easier to check whether t is on a cycle, and whether
it is possible to reach t from s.

To solve this problem, we create the graph GT , which is the same as graph G with its edges
reversed. Then, we perform a depth-first search on this graph starting at t. During this search,
we keep track of the distance of each reachable vertex from t. This number is the distance from
s to t in G; that is, the number of steps F that brings us from s to t for the first time. At the
same time, if we reach some vertex with a departing edge to t, then we obtain the size of the
cycle C, which is the distance from t to that vertex plus 1.

Thus, whether the path in G starting at s with length K ends at t can be determined as
following:

• If we cannot reach s in GT , then this path in G cannot end at t.

• If we reach s in GT after F steps, but t is not on a cycle, then this path in G ends at t if
and only if K = F .

• If we reach s in GT after F steps, and t is in a cycle of size C, then this path in G ends at
t if and only if K = F + nC for some non-negative integer n.

For our task, the path starting at the i-th intersection with length K will end at intersection
P if and only if the path in G starting at vi with length K ends at vP or v′P . Note that during
the implementation, we do not need to create graph G, but we can create GT directly. It is also
convenient to first create an array for storing Fs for each vertex s. We then initialize Fs and C
to ∞, and update them during the depth-first search. We perform the search twice, starting at
vP and v′P , respectively.

Since the depth-first search takes O(M + N) running time and each query can be checked in
constant running time, this algorithm takes O(M +NQ) running time in total, which is sufficient
to obtain full marks for this task.

3


	Graph construction
	An O(M + NKQ) solution
	An O(M + NQ + lg K) solution
	An O(M + NQ) solution

