
acm
cz

acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
University of West Bohemia University of Žilina

CTU Open Contest 2021

Tone Banks

tone.c, tone.cpp, Tone.java, tone.py

On Mars, the greatest Earth music hits of all time are stored in huge physical databases of
records. This will allow current and future Mars inhabitants to remind themselves of the culture
of the motherland, should they grow homesick. These databases are called Tone Banks, as they
store the songs tone by tone.

However, only just recently, it has been discovered the data format of the records might degrade
when exposed to cosmic radiation over long periods of time. Because of that, is it needed to
quickly convert the records from the currently used format to a new one.

The current data format consists of a 2D grid of Data Points. Each Data Point is of one of two
types, either a “#” or a “.” (similarly to Earth’s 1s and 0s). These two Data Point types are
said to be complementary to each other. Two Data Points are considered adjacent, if they share
an edge in the grid. This means a Data Point on coordinates (X,Y), that is, on X-th row and
Y -th column, is adjacent to Data Points on coordinates (X + 1, Y), (X − 1, Y), (X,Y + 1) and
(X,Y − 1) (within the grid range).

Data Points form so called Data Blobs, which are connected areas consisting of a particular
Data Point type. That means each Data Point of a Data Blob is reachable from every other
Data Point of the Data Blob via a sequence of steps through consecutively adjacent Data Points
of the same type.

On top of that, within the connected area of a Data Blob, there may be other Data Blobs
consisting of the complementary Data Point type. The containment may repeat indefinitely,
alternating Data Point types, until there is a Data Blob not containing any other Data Blob.
For a Data Blob, we call inner Data Blobs such blobs within its area, that are adjacent to at
least one Data Point of the Data Blob. Each Data Blob may contain 0 to 26 inner Data Blobs.
The number of inner Data Blobs contained in a Data Blob determine which tone, represented
as an English character, it encodes (1 Data Blob = a, 2 Data Blobs = b, . . . , 26 Data Blobs
= z). A Data Blob not containing any other Data Blobs doesn’t represent any tone/character;
it represents an empty string. A Data Blob must encompass its inner Data Blobs fully within
itself. That means each Data Point (X,Y) of its inner Data Blobs must not be adjacent with
Data Points of the same type of its, possibly hypothetical, outer Data Blob (the Data Blob in
which it is contained). These points must not only not be adjacent according to the definition
above, but they must not be adjacent even over a diagonal to points (X+1, Y +1), (X+1, Y −1),
(X − 1, Y + 1) and (X − 1, Y − 1). Note that different inner Data Blobs of a single Data Blob
may be adjacent over a diagonal. See images below for examples.

Each stored song consists of a sequence of tones, and thus it may be represented as a word
consisting of English letters. A song is decoded from a record by the following algorithm. For
simplicity we consider that beyond the boundaries of the grid there is an infinite Data Blob
of type “.”. In this Data Blob, there is always a single Data Blob of type “#”. We start by
decoding this Data Blob. The word represented by a Data Blob is a concatenation of the letter
representing the Data Blob and all words represented by inner Data Blobs contained within
it. The concatenation happens consecutively by the lexicographical ordering of the coordinates

#

. #

. # #

. # ## #

#

4

3

2

1

0

0 1 2 3 4

x

y

3 correct inner “.” Data Blobs

#

. #

. # .

. # ## #

#

4

3

2

1

0

0 1 2 3 4

x

y

Incorrect inner “#” Data Blob

(X,Y) of Data Points of the inner Data Blobs. That is, from two Data Blobs, we first concatenate
the word representing a Data Blob with a Data Point with the least row number, or in the case
of equality of row numbers, the least column number.

The new data format adheres to the very same rules, only it encodes the reverse of the word
encoded by the old format. Can you safely transform all the songs to the new format?

Input Specification

On the input there are two integers N and M (1 ≤ N,M ≤ 100), representing the number of
rows and the number of columns in the grid of the old data format, respectively. Next N lines
follow, each containing M characters of type either “#” or “.”. The grid encodes a nonempty
word in accordance to the format described above.

Output Specification

Output two integers K and L (1 ≤ K,L ≤ 3000), the number of rows and the number of columns
of the grid for the new data format, respectively. After that, output K lines with L characters
each, of type either “#” or “.”. The grid must encode the reverse of the word encoded by the
input.

Sample Input 1

7 7

#######

#.....#

#.....#

#.....#

#.....#

#.....#

#######

Output for Sample Input 1

3 3

###

#.#

###

The first Sample Input encodes word ”a”, therefore the answer encodes also word ”a”.

Sample Input 2

8 29

#############################

#...##........##............#

#.#.##.#..##..##.####...###.#

#.#.##....##..##.####...#.#.#

#...##........##........###.#

#######################.....#

######.................######

#############################

Output for Sample Input 2

14 33

#################################

#################################

#####......................######

#####.################.###.######

#####.#...#######..###.#.#.######

#####.#...#####....###.###.######

#####.#.######..#..###.#.#.######

#####.########.....###.###.######

#####........#########.#.#.######

#####..................###.######

#####..................#.#.######

#####..................###.######

###########................######

#################################

The second Sample Input encodes word ”dabba”, therefore the answer encodes word ”abbad”.

